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Motivation (1/2)

• In each six-hour global DA window approx 8m obs are used to 
constrain a state vector with about 6 x 108 components.

• At the Met Office, satellite observations significantly affected 
by cloud are currently discarded using a number of QC flags

• This is to avoid corrupting the analysis with obs and errors that 
are not modelled well

• Better cloud and precip parametrization schemes, better 
models of cloud radiative effects and better error 
characterizations have led to the operational assimilation of 
all-sky radiances at ECMWF and now at NCEP 



Motivation (2/2)
• The all-sky observation operator needs profiles of different 

water phases: a reliable scheme to partition moisture 
increments from VAR among the different phases is needed

• A consistent scheme to assimilate moisture-sensitive obs also 
key to progress convective-scale 4DVar

• Also useful for assimilation of precip data in Var

• Current operational (global only) increment scheme is 
nonlinear to keep total moisture increments meaningful when 
close to dry or saturated conditions

• The subsequent introduction of our current moist nonlinear CV 
relaxes requirement of more complex incrementing op 



Cloud-affected radiances
• AMSU-A Channel 4 (52.8 GHz) on Metop-B, all available obs

over ocean, -50 deg < lat < 50 deg, 20150725 1200 UTC



Cloud retrievals
• Retrieved LWP from all available obs over ocean,                     

-50 deg < lat < 50 deg, 20150725 1200 UTC



Cloud retrievals
• Retrieved LWP from all available simulated obs over ocean,    

-50 deg < lat < 50 deg, 20150725 1200 UTC



Cloud retrievals
• Average retrieved LWP from all available (simulated) obs over 

ocean, -50 deg < lat < 50 deg, 20150725 1200 UTC



• AMSU-A average LWP all available obs over ocean,                
-50 deg < lat < 50 deg, 20150621 0600Z – 20150727 1200Z



• AMSU-A Channel 4 (52.8 GHz) all available obs over ocean,   
-50 deg < lat < 50 deg, 20150621 0600Z – 20150727 1200Z



• AMSU-A Channel 5 (53.6 GHz) all available obs over ocean,   
-50 deg < lat < 50 deg, 20150621 0600Z – 20150727 1200Z



Cloud-dependent errors
• AMSU-A Channel 4 and 5 (52.8 GHz and 53.6 GHz) all 

available obs over ocean, -50 deg < lat < 50 deg, 20150621 
0600Z – 20150727 1200Z



Moisture analysis in VAR



UM and VAR variables and 
transforms

• Model variables: x = (u, v, w, θ, П, ρ, q, qcl, qcf, Cl, Cf, Ct)

• Perturb. forecast (PF) model vars: (u’, v’, w’, θ’, П’, ρ’, q’T) = w’

• w’ components not independent: we need uncorrelated vp

and transform Up such that w’ = Up vp

• Met Office CVs: vp = (ψ’, χ’, pA’, μ’,logm’) = stream function, 
velocity potential, unbalanced pressure, moist variable, log of 
aerosol concentration

• Incrementing op: x’ = SqT

-I Sgrid
-I w’



Moisture in VAR
• VAR only uses a single moist control variable derived from 

(iterative) linearization of total relative humidity increments so 
that it is approximately Gaussian, unbiased and uncorrelated 
with the other control variables

• h regression coefficient between      and              : 
uncorrelated; a ~ 1/σ(rhT

b|rhT
b + rhT’) : nonlinear, more 

Gaussian

• The implied parameter transform Up then determines 
increments of total specific humidity q’T
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Current moisture incrementing op
• Let qs, qcl, qT = q + qcl be the grid-box mean saturation specific 

humidity, specific liquid cloud water and total specific humidity. 
Asterisks denotes local quantities.

• For a given G(s) (see Smith 1990) this leads to a qcl = f(qT,T,p) 
nonlinear function of qT ,T and p which can be iteratively 
linearized

• Frozen cloud can be diagnosed as                  where  

• Problems in the UKV UM configuration (precipitation spin-
down): switched off, all increments to vapour, with cloud liquid 
and frozen water fields unchanged
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New moisture incrementing op



Design of the new scheme
• Based on linear relation between q’cl and (q’T,T’,p’)

• Physically consistent: in cloud q’cl pos correl with q’T and neg
correl with T’. In clear air zero correl with q’T. Consistent with 
moist CV design. [need for additional CV to create cloud in 
clear air??]

• Frozen cloud option
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New moisture incrementing op (1/2)
• Model for moisture increments can also be trained against 

ensembles of model forecasts. In this case:

• And for the frozen cloud option:

• Training coefficients at given rhT bin interval (5% res) and “wet” 
model level (separate training for global and UK) 

• Final increments: (q’cl)diag = a(rhT,z) q’cl ; (q’cf)diag = b(rhT,z) q’cf ; 
(q’)diag = q’T - (q’cl)diag - (q’cl)diag
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New moisture incrementing op (2/2)
• Simpler design now acceptable as q’T derived from nonlinear 

moist control variable

• Now Cl,f from UM reconfiguration: consistent with cloud scheme 
and dynamics

• Statistical link with MOGREPS for given rhT and model level. 
Coefs could even be computed at appropriate time 

• Frozen cloud increments through Cf : no ad-hoc assumptions

• Cloud increments only when Cl,f > 0

• Straightforward calculation of partitioned analysis increments: 
no need for inclusion in the UM IAU; diagnostic output 

• Cheaper and self contained



Statistical training



Linear diagnostics of moisture
• Global ensemble of 44 T+6 perts on 6 March 2015 1200 UTC














T

dT

Ted
qq

CC

CC
s

sT

fl

fl ))(ln(

1

)1(

clq



Lin diagnostics of moisture (global)

• q’cl regression coefficients (20150306 06Z + 20160115 00Z)

• q’cf regression coefficients

mean = 0.60
median = 0.29

mean = 0.26
median = 0.12



Meteosat IR image



Moisture analysis increments
• qcl increments, new scheme



Moisture analysis increments
• qcf increments, new scheme



Summary

• Moisture-sensitive obs are under-used. Need for cloud-dep errors

• In VAR water phases analysed via single moist control variable: need 
for a diagnostic relation to partition the increments into different water 
phases

• Present increment op complex nonlinear code that is not performing 
well: either limited or switched off (as in the UKV)

• New operator: linear (in qT’, theta’); directly linked to operational UM 
cloud scheme and (in)directly to op ensemble; only needed in VAR; 
partitioned increments output 

• Key requirement for two major projects using VAR: all-sky assimilation 
of satellite data; Convective-scale 4DVar (including precip
assimilation)



Thanks for your attention



Consistency tests
• Red: qcl from 1st ens member. Blue: ens mean qcl + 

flin(qt1’,theta1’). Green: ens mean qcl + a(rht,z) * 
flin(qt1’,theta1’). Note: a(rht,z) from same ensemble 

global mean

global set of profiles


