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• Shear strain by winds introduces a downscale (and also upscale) of 

the tracer variance

• Large body of literature that discusses this in Eulerian and 

Lagrangian models, in Turbulence theory, and it is seen in 

observations (e.g. laminea in ozone profiles, streamers in the water 

vapor channel)



• Here we examine the implications this have on error covariance 

propagation

• And we recall that there is no observation update in this study



Transport of mass
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Discretize

Forecast error covariance matrix

Forecast error variance



Model 

Evolution of covariance function

PDE solution of error variance

Discretize and forecast
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Covariance function and their evolution

• continuous function of space

• no spatial discretization

• with a linear model – no higher moment closure

• and here, an analytical solution can be obtained

each member i obeys the transport equation, and so are their perturbations

0
~

~





i

i
q

t

q
V

Covariance function defined for a pair of points 
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Evolution of covariance function

Evolve an ensemble of mass fields



Evolution of covariance function
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Solution : variance function equation
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• the covariance at the same point (i.e. the variance)  
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is constant along the characteristics (or along the flow)

0),(
V







e

ee

Vt
t

V

dt

d
xV

),( t
dt

d
xV

x




How does it relate to an EnKF ?
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We can show that this is equivalent to solving the covariance matrices as 
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• discretize in space, and 

• solve the evolution by operator splitting (first-order), on     and then on  1
x

2
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Lets compare the advection of variance

with the variance of the EnKF

both using the same transport model

• 3D transport model, flux form PPM (piece-wise parabolic) used for 

stratospheric transport and assimilation (BASCOE, Skachko et, 2014)

• resolution 3.75° longitude by 2.5° latitude on 37 levels 

• using ERA-Interim meteorology

An ensemble of Nens = 20 is generated with a homogeneous isotropic 

correlation model  with L = 800 km

• initial variance used as initial condition for variance transport

Compare

 A – the numerical solution of advection of variance

first obtain an analytical solution for variance then discretize

 B – the variance (diagonal of Pe ) from an ensemble of model transport

first discretize the model then obtain the variance 
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Lets compare the advection of variance

with the variance of the EnKF

Compare

 B – the variance (diagonal of Pe ) from an ensemble of model transport

first discretize the model then obtain the variance 
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True (advection)

A - advection transport of variance



True (advection)
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B - EnKF variance for linear transport



B - EnKF variance for linear transport



B/A : Ratio of  the EnKF error variance with the advection of error variance

• The variance loss depends on the ratio of r = correlation length / model resolution

• Differences with small sample size (Nens = 20) is due to sampling errors

r ~ 6

r ~ 3

r ~ 1



• As N increase the correlation becomes less noisy

N = 20



• As N increase the correlation becomes less noisy

N = 100



• As N increase the correlation becomes less noisy

N = 500

Variance loss occurs because we apply an advection scheme on 

filamentary covariance structures, created by wind shear



Solid body rotation winds

Initial error correlation Error correlation after 4 days

Variance loss:  solid body rotation winds,  ERA interim winds



Consider 1D advection uniform wind.  J grid points.

simple upstream differencing

where c is the Courant number.   
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whereas the advection of error variance should be
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the difference between the two expression is  
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is actually a spitting error term



How could we fix this ?

(although this is not the object of this study)

• By applying inflation (to augment the variance).  If multiplicative inflation

a Schur product is also needed to reduce the correlation length-scale

• For transport problems; 

A - replace the EnKF variance by the advection of variance

solution.  Need a Schur product compensation to reduce

the resulting correlation lengths

B – To use a Lagrangian advection of error covariances

(i.e. Lagrangian KF (Lyster et al 2004)).  Because of trajectory

collapse remapping of the error covariance is needed and

this created variance loss.

C – Use the Parametrized Kalman filter where variances and

length-scales are evolved and updated by analysis

(see Pannoucke poster) 

• Second order splitting (Strang Splitting) but this only affects the time

time discretization issue, whereas the spatial discretization is the 

important aspect to consider 



• Is the use non-diffusive transport schemes like the Prather scheme

• To propagate error covariance is an alternative covariance space 

Instead of             consider          where 

This requires however  a rewrite of existing transport models

• Evaluate the splitting error term.  But this depends on the specifics of 

the numerical scheme
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Splitting error – illustration in a 1D case

simple upstream scheme
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EnKF numerical solution =  Advection of variance + error term

with a simple upstream scheme the

so to compensate for the error term we could use an inflation

of the form Pxx 12
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EnKF numerical solution + inflation term

Pxx 12
 inflation term = 



EnKF numerical solution + inflation term

Pxx 12
 inflation term = 

compensating for the error term is similar to inflation

but we have here a specific form for it (i.e. the double gradient)



Relevance of this study

• Chemical data assimilation, ex: stratospheric ozone

• CO2 inverse modeling using EnKF

• Tracer assimilation in oceans

• Assimilation of water vapor

• Could also be relevant in some meteorological applications 

where cascade to smaller scales is important



Thanks for your attention



extra slide



First-order operator splitting
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takes the form of a two-step solution: 
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When the operators commute  
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the solution of (1) is identical to the solution (2)-(3) by operator splitting

Important result:

• The spatially continuous advection operators 
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do commute, but this is not generally true for their discrete formulations


