

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

Influence of assimilating supplemental observations on tropical cyclone analyses and predictions

Sharanya J. Majumdar (University of Miami, USA) Michael J. Brennan (NOAA/National Hurricane Center, USA) Daryl T. Kleist (University of Maryland, USA) Kate Howard (NOAA/NCEP, USA)

International Symposium on Data Assimilation, 18-22 July 2016

(b) 1215 UTC 4 OCTOBER 2013 GOES-E IR AND G-IV DROPSONDE LOCATIONS

Available supplemental resources

Dropwindsondes released from NOAA Gulfstream IV (G-IV) aircraft

06 and 18 UTC rawinsondes

Pre-2010 Data Denial Experiments

- 1982-1996: NOAA Synoptic Flow Experiments
 16-30% improvement in 12-60 h track forecasts
- 1997-2006: NOAA Synoptic Surveillance
 10-15% improvement in 12-60h track forecasts
- 2003-2008: DOTSTAR and T-PARC in NW Pacific
 10-20% improvement in 1-5 day track forecasts
- Results vary substantially with model/DA
- Programs ongoing in 2010s, few evaluations

Post-2010 Data Denial Experiments

• Irene (2011). 3d-Var. Majumdar et al. (WAF, 2013)

- Isaac (2012). Hybrid 3d-Var/EnKF.
- Sandy (2012). Same DA. Small impact.
- Karen (2013). Same DA. Brennan et al. (WAF, 2015)
- Joaquin (2015). Same DA. Small impact.

• Future storms: Hybrid 4d-EnVar

1. Hurricane Irene (2011)

Net Track Forecast Improvement

(Sample Size)

GOES-E IR 0015Z 23 AUG, DROPS 1800Z 22 AUG-0300Z 23 AUG 2011

Conclusions 1: Irene (2011)

- Very little room for improvement
 - Dropwindsondes: 2-3 day forecasts improved
 - Rawinsondes: 4-5 day forecasts improved
 - Combination: Small net improvement
- Improvements particularly for 0600 and 1800 UTC forecasts
- Small corrections to right-of-track bias

7 Synoptic Surveillance Missions 24-27 August

Targets: Isaac; subtropical ridge north of Isaac; midupper trough along U.S. southeast coast.

24-25 August cycles: GFS forecast tracks generally to the right of the best track. Drops usually shift forecast closer to best track.

Average Track Errors

Vortex Structure (24-h Forecast Valid 18Z 26 August)

Relative Humidity (shaded), PV, Wind (kt)

- W-E cross section through center
- Control shows shallower, weaker vortex relative to No Drop

Vortex Structure (Analysis Valid 18Z 26 August)

Relative Humidity (shaded), PV, Wind (kt)

Analysis

Analysis

 Analysis shallow and weak, more similar to Control than No Drop

Conclusions 2: Isaac (2012)

- Dropwindsondes reduced 4-5 day average track forecast errors by about 30%
 - When differences were seen due to the drops, they were improvements
 - For some cycles, little change was seen
- Drops appear to reduce the cycle-to-cycle variability in the GFS track
- Track forecast uncertainty increased during the period of the 7 missions
- Little change in GFS intensity forecast errors due to the drops

3. Tropical Storm Karen (2013)

- Karen formed as a 45-kt tropical storm early on 3
 October 2013 and reached a peak intensity of 55 kt later that day despite moderate vertical shear
- As the shear increased, Karen steadily weakened before dissipating on 6 October
- Intensity guidance and global models showed Karen strengthening before reaching northern Gulf Coast

Karen NOAA G-IV Synoptic Surveillance Mission

0530-1300 UTC 4 October 2013

(b) 1215 UTC 4 OCTOBER 2013 GOES-E IR AND G-IV DROPSONDE LOCATIONS

Vortex Structure (Analysis – 12Z 4 October) Control

PV (shaded), Potential Temperature, Wind (kt)

Relative Humidity (shaded), PV, Wind (kt)

- Control shows more tilt in Karen's PV tower in the 12Z analysis
- Control also shows stronger upper-level winds west of Karen and more dry air over the western part of Karen's circulation relative to No Drop

Vortex Structure (Analysis – 12Z 4 October) No Drop

PV (shaded), Potential Temperature, Wind (kt)

Relative Humidity (shaded), PV, Wind (kt)

- Control shows more tilt in Karen's PV tower in the 12Z analysis
- Control also shows stronger upper-level winds west of Karen and more dry air over the western part of Karen's circulation relative to No Drop

Low-Level Vortex and Shear F06: 18Z 10/4/2013

Low-Level Vortex and Shear F60: 00Z 10/7/2013

Vortex Structure (F60) Control

PV (shaded), Potential Temperature, Wind (kt)

Relative Humidity (shaded), PV, Wind (kt)

• By F60, Control shows weak vortex with dry air above that does not intensify ahead of approaching upper-level trough

Vortex Structure (F60) No Drop

PV (shaded), Potential Temperature, Wind (kt)

Relative Humidity (shaded), PV, Wind (kt)

• By F60, cyclone in No Drop is much deeper and appears to intensify in region of upper-level divergence

Conclusions 3: Karen (2013)

- G-IV data appear to result in a slightly more tilted vortex, stronger vertical wind shear and drier air aloft impinging on the circulation of Karen
- **Control** shows gradual weakening and tilting after 12 h, qualitatively similar to observations
- **No Drop** shows 10-15 kt strengthening in 24-48 h, contrary to observations

Future Work

- Examine additional cases, especially those in which intrinsic predictability is low (forecast variance is high)
- Diagnose how the changes due to supplemental obs are based on the **Hybrid GSI covariances**
 - Information in routine observations is being spread out more intelligently than before, leaving less room for improvement from surveillance missions?
- Develop more sophisticated methodologies for planning the spatial and temporal deployment of supplemental data, e.g. ensemble sensitivity