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Introduction

Horizontal correlations are not represented into the obs. error
covariance matrix R.

This certainly contributes to the undersampling of observations in
our assimilation schemes.

Example with MSG/SEVIRI data in AROME

(a) Non-cloudy obs. (3km) (b) Assimilated obs. (70km)

Y. Michel and S. Guedj R : spatial correlations with Lanczos 1



Introduction

Context

We need R−1 when writting the gradient of the cost-function.

R (and R−1) can probably be represented in block-diagonal form ;
each block corresponding to an independent instrument.

Even though, dimensions are big :

SEVIRI one channel is p ∼ 37122 ∼ 107 over the globe ; p ∼ 4 · 105 for
AROME.

RADAR One elevation from a single radar gives p ∼ 5122 = 2 · 105.

Possible approaches

Finite elements version of the diffusion equation
[Lindgren et. al 2011].

Modelling of R with interpolations and estimating a truncated
inverse with Lanczos [Fisher 2014].
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Introduction

Context – II

Modelling interchannel correlations (with direct methods) for
infrared sounders has proven useful [Weston et.al 2014];

Estimating R may be possible with the diagnostic from
[Desroziers et. al 2005].

Progress has been made for SEVIRI radiances and radial wind from
Doppler RADAR [Waller et. al 2016].

Goal of this study

Evaluate the approach proposed by [Fisher 2014]:

in a limited area context (for AROME) ;

for SEVIRI and RADAR data.
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Outline

1 Estimating spatial correlations in R

2 Modelling R with interpolations

3 Lanczos-based truncated inverse
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Estimating spatial correlations in R : SEVIRI

Following [Desroziers et. al 2005]:

R ≈ E(dadT
b )

Correlations in R are estimated through a time average/median.

Figure : Application of the Desroziers diagnostic to the 6.2µm WV channel
from SEVIRI, as in [Guedj et.al 2014].
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Estimating spatial correlations in R : RADAR
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[Waller et. al 2016]
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Figure 1 – A typical radar scan where each box is the location of a superobservation. The
blue cells show a group of observations, all at the same height, that would be compared to
calculate horizontal correlations. The red cells show observations that would be compared to
calculate the along-beam correlations.
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Figure : Geometry
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Figure 2 – A typical radar beam at elevations 1o (black), 2o (blue), 4o (red) and 6o (cyan).

Table 2 – Horizontal and along-beam standard deviations calculated for Cases 1-4 using all
available data up to a height of 5km.

Case Horizontal standard Along-Beam standard
deviation (ms−1) deviation (ms−1)

1 1.97 1.95
2 1.57 1.59
3 1.96 1.99
4 1.82 1.89
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Figure 3 – All elevation horizontal observation error correlations for Case 1 (Control,
squares), Case 2 (Alternate background error statistics, diamonds), Case 3 (Thinned raw
data, triangles) and Case 4 (New observation operator, circles) . Error correlations are
deemed to be insignificant below the horizontal line at 0.2.
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Figure : Azimuthal direction

It is also possible to compare observations at the same range, observations will have the
same measurement volume but will be at different heights in the atmosphere. In this case
we find that for each elevation the correlation length scale is similar, e.g. at a range of
40km each elevation has a correlation length scale of ≈ 23km (not shown). This suggests
that the the measurement volume of the observation has the largest impact on the hori-
zontal correlation length scale, with correlation length scale increasing with measurement
volume.

5.1.2 Along-beam correlations

Next we calculate the along-beam observation errors using the data from Case 1. We begin
by calculating the average observation error covariance and comparing these results with
those from Météo-France [Wattrelot et al., 2012]. We do not expect estimated statistics
to be equal to those found by Météo-France as there are differences in the operational set
up (e.g. observation and background error covariance statistics, observation processing,
observation operators and thinning distances) and the region and time scale covered by
the data.

Our estimated standard deviation (Table 2) is larger than the standard deviation found
by Météo-France which is 1.51ms−1. This is likely to be the result of the different op-
erational set up and observation processing. We plot our estimated correlation function
along with the correlation found by Météo-France in Figure 7. We see that the correlation

Separation distance (km)
-40 -30 -20 -10 0 10 20 30 40

C
or

re
la

tio
n

0

0.2

0.4

0.6

0.8

1

Figure 7 – All elevation along-beam observation error correlation for Cases 1 (Control,
squares), 2 (Alternate background error statistics, diamonds), 3 (Thinned raw data, trian-
gles) and 4 (New observation operator, circles) and those found previously by Météo-France
(crosses). Error correlations are deemed to be insignificant below the horizontal line at 0.2.

length scales are approximately 5km longer than those found by Météo-France. Given the
different operational setup used by Météo-France the similarities between the results are
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Figure : Radial direction
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Modelling R with interpolations

[Fisher 2014] has proposed the following square-root model :

R = UUT

where U is a sequence of operators :

U = ΣoPS−1DS

where :

S−1DS is a spectral based correlation model ;

P is the interpolation from a regular grid to the observation space ;

Σo is the multiplication by the standard deviations.

Note :

the regular grid may be of coarse resolution ;

we do not need to cover the whole analysis domain ;

we can use alternative (gridpoint) correlation models.
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Modelling R with interpolations : SEVIRI

Define a grid covering the AROME domain, at 10 km spatial
resolution (240× 256 points).

Use non-periodic hyperGaussians recursive filters (σ = 60 km,
γ = 5, Purser et. al 2003b).
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Modelling R with interpolations : SEVIRI
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Fig: Spatial correlations modelled in R.
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Fig: Spatial correlations modelled in R.
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Fig: Spatial correlations modelled in R.



Modelling R with interpolations : RADAR
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Grid covering the radar only.

Convolution with 1D recursive filters ;

Periodic in the azimuth, non-periodic in the radial direction.



Modelling R with interpolations : RADAR
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Fig: Spatial correlations modelled in R.
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Fig: Spatial correlations modelled in R.
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Fig: Spatial correlations modelled in R.
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Lanczos-based truncated inverse

A reduced rank approximation of R may be obtained from the Lanczos
algorithm :

R ≈ Σo

(
K∑

k=1

λkvkvT
k

)
Σo

When K < p, this approximation can be regularized :

R ≈ R̂ ≡ Σo

(
αI +

K∑
k=1

(λk − α)vkvT
k

)
Σo

allowing the explicit inversion formula :

R̂−1 = Σ−1
o

(
α−1I +

K∑
k=1

(λ−1
k − α−1)vkvT

k

)
Σ−1

o
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Lanczos-based truncated inverse
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The regularisation parameter α is chosen to conserve the total trace :

Tr[R] = Tr[R̂] =⇒ α =
p −∑K

k=1 λk
p − K

α is one minus the fraction of variance explained by the first K
eigenvectors.
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Lanczos-based truncated inverse
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Effects of the truncation – RADAR
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Truncation K = 500

Spatial correlations Variances

Truncating the spectrum introduces :

erroneous long range correlations ;

errors in the variances.
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Truncation K = 100

Spatial correlations Variances

Truncating the spectrum introduces :

erroneous long range correlations ;

errors in the variances.
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Truncation K = 50

Spatial correlations Variances

Truncating the spectrum introduces :

erroneous long range correlations ;

errors in the variances.



Conclusions
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Estimation : based on Desroziers’ diagnostic, both SEVIRI
and RADAR observations are significantly
correlated.

Modelling : we can build a spatial correlation model to
represent those correlations in observation
space.

Inverse : use of the Lanczos algorithm [Fisher 2014]...
may require a large number of eigenvectors (e.g., 500).
may introduce erroneous long range correlations /
wrong variances if truncation is too severe.

but otherwise works !



References I

Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005)

Diagnosis of observation, background and analysis-error statistics in observation
space.

Q.J.R. Meteorol. Soc., 131, 3385-3396.

M. Fisher, 2014.

Accounting for Correlated Observation Error in Variational Data Assimilation.

ESA workshop on correlated observation errors in Data Assimilation, April 24th,
2014.

S. Guedj, V. Guidard, B. Ménétrier and J.-F. Mahfouf (2014)

First estimates of observation error correlations for the future assimilation of
MTG-IRS radiances.

ESA workshop on correlated observation errors in Data Assimilation, April 24th,
2014.

Lindgren, F., Rue, H. and Lindström, J. (2011)

An explicit link between Gaussian fields and Gaussian Markov random fields: the
stochastic partial differential equation approach.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73:
423-498.

Y. Michel and S. Guedj R : spatial correlations with Lanczos 15



References II

J. A. Waller, D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard (2016)

Diagnosing observation error correlations for Doppler radar radial winds in the
Met Office UKV model using observation-minus-background and
observation-minus-analysis statistics.

Monthly Weather Review.

Weston, P. P., Bell, W. and Eyre, J. R. (2014)

Accounting for correlated error in the assimilation of high-resolution sounder
data.

Q.J.R. Meteorol. Soc., 140, 2420-2429

Y. Michel and S. Guedj R : spatial correlations with Lanczos 16


	Estimating spatial correlations in R
	Modelling R with interpolations
	Lanczos-based truncated inverse

