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Introduction

* All models of physical processes contain errors.

* Errors can be due to:
* A lack of scientific understanding
* Alack of computing power
* eg. Sub-grid turbulence, radiation

* Parameterisations are simplified functions used in numerical
models to account for these errors.

* Improving the errors in these parameterisations is currently done
in an ad-hoc fashion, eg. via parameterisation tuning

* We propose a systematic method for estimating these
parameterisation errors, through the use of state estimation.



Our method

 Aim: Estimate how the true state, xt,evolves

- Background state, x?, is generated using the prior model
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Our method

* Zooming into a single time step of the DA trajectory

o

a
|xk+1

K (k1 * Time



Our method

* We create a new variable X ;1
* Isthe analysis state evolved one time step using the prior model
* Represents the analysis forecast

* Compute the differences between x“ and X over the whole domain at
all timesteps
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Motivating example

* This method is now applied to estimated the functional

difference between a linear advection scheme and a nonlinear
advection scheme over same domain.
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Generating x% — X

 The mean (over the ensemble) of x* — ¥ plotted for each
gridpoint and timestep generated by the 40 ensemble member
EnKF using the prior model, with observations at all timesteps.



Extracting the model error
structure

* To extract the model error present, it is required that
the structure in x¢ — X be determined

* To do this, a test function, g(x), using any prior
knowledge available, needs to be defined. This is
denoted with the form:

g(X) o fO(xi aO) + et fn(x; an)

* Very important this is specified well
* Our method only searches in span of test function



Analysing test function

* Once an adequate test function is determined, the test
function is split into separate sub-functions:

go(x) = folx, ap)
g1(x) = fol(x, flo) + f1(x, aq)

In ) = fol, o) + fi(t ar) + -+ + X, )

* Aregression analysis method is used to estimate optimal
parameters, a;, with uncertainties, for each of the g;(x) (i =
0,1, ...,n) that best fits the estimated model error, x¢ — X.



The Bayesian Information
Criterion

* To assess the quality of the terms, the Bayesian Information Criterion
(BIC) values are computed for each g;(x), where

BIC =k logN — 2log L

k = Number of terms, N=Number of fitting points in the regression, L is
maximised likelihood function

* The BIC represents the trade-off between how well the sub-function fits
the x@ — X field and the complexity of the model

 Smaller values of BIC indicate ‘better’ sub-functions

* The greatest decreases in BIC correspond to the terms with the ‘most’
information about the structure of the model error



BIC of Functional Estimates obtained
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* Test function is reordered
based on greatest
decreases in BIC and
regression is performed
again




Reordered Functional Estimates obtained
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* Minimum occurs after the addition of
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* Optimal coefficients obtained by
applying least squares to x* — X~

» Optimal functional form of model
error:
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Discussion and future work

* Quality of model error parameterisations are heavily
dependent upon the quality of the data assimilation
method used.

* Works best when data assimilation updates the state at all
gridpoints in the domain and at all timesteps.

* A high-resolution model can be used to ensure that all
points of a lower resolution model are updated



Use High Resolution models to
improve lower resolution models
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Remarks and Conclusions

 Parameterisation Estimation Method is shown to work well
for the advection model

* Picks out the optimal functional form of the model error and
generates uncertainties that contain the true model error

* The method is very dependent upon how well the DA scheme
used performs
* If DA is worse, error estimates are larger in a consistent manner.

* Future work is looking into applying this to higher resolution
models to improve the parameterisations of lower resolution
models.
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Comparison with state augmentation

* State augmentation is used to estimate the model error
between linear and nonlinear advection models with same
uncertainty in relevant terms

* Prior augmented model is:
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where the «; are F_ar_a_m_eters to be estimated by state B
augmentation, all initialised at 0, with initial variances specified
to include true model error.

* 2000-member EnKF is used to ade uatel%lestimate augmented
forecast error covariance matrix without P/ -localisation.



Comparison with state augmentation
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Estimated coefficient uncertainty

* Uncertainties in the calculated coefficients can be
obtained from the regression analysis.
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* For ensemble-based methods, this can be applied to each
ensemble member’s x;, — X,,, to incorporate further
uncertainty from the ensemble.



Estimated parameterisation
uncertainty

* Uncertainties in the calculated coefficients can be
obtained from the regression analysis.

* For example, for linear least-squares, the coefficient error
covariance matrix is obtained from:

Cov(B) = (XTX) 102

where X" = (go (x0), 91 (%0, .-+, gn (%0, go(x1), ...) and
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* For ensemble-based methods, this can be applied to each
ensemble member’s x;;, — X,,, to incorporate further
uncertainty from the ensemble.



