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Warn-on-Forecast Project

- Provide accurate, short range (0-3 h) probabilistic
forecasts of severe convective storms is a key
component of the Warn-on-Forecast project

- A regional, convection allowing ensemble model is
essential to achieving this goal

- Requires hi-resolution observations of convection and the near storm
environment

* Robust methods to assimilate high resolution remote sensing
observations from multiple platforms and sensors

- Model-based probabilistic forecasts can aid in severe
weather warning guidance and leading to significantly
improved lead times

- Move from observation based warnings to a mix of
observations and probabilistic forecasts




Satellite Data Assimilation

GOES-Imager observations are suitable for storm-scale DA
- High temporal and spatial resolution, low data latency
* Supplements radar observations from WSR-88D Doppler radars
- WSR-88D not as sensitive to non-precipitating clouds

- Low-level stratus, cirrus outflow from storms

- Developing convection during CI

« Clear-air reflectivity 1s not the same as cloud-free radiances / retrievals

- Future GOES-R data will provide additional and higher
resolution cloud products

+ Launches in November 2016
- First useable data available Spring 2017

- Important consideration: Assimilating satellite
observations must be able to show skill in high impact
weather forecasting compared to only assimilating radar
data




NSSL Experimental Warn-on-Forecast
System for ensembles (NEWS-e)

- WRF-ARW: v3.6.1

+ Convection permitting horizontal resolution: 3 km, 51 vertical levels

- 36-member ensemble with physics diversity
+ Cloud microphysics: Thompson

- PBL: YSU, MYdJ, MYNN2
- Radiation (SW/LW): Dudhia/RRTM, RRTMG/RRTMG

- RAP Land Surface Model, 9 soil levels

- IC/BCs use members of an experimental HRRR ensemble
generated by GSD run during the spring 2016.

- Data assimilation (DA) procedure:
- DART parallel ensemble adjustment Kalman filter
- Prior adaptive inflation applied to state
- Gaspari and Cohn spatial vertical and horizontal localizations
- Localization radius is a function of observation type

http://www.nssl.noaa.gov/projects/wof/news-e/




Storm-scale Data Assimilation

g éssimilation of observations begins at 1800 UTC for each
ay

* Continues until 0300 UTC the next day

15 minute assimilation cycle with observations partitioned
into £2.5 minute windows

Assimilated observations:

- WSR-88D Reflectivity from the MRMS (Froduct and Level 2 Doppler radial
velocity from all radars in storm-scale domain

* Liquid and Ice water path (LWP, IWP) retrievals from GOES Imager
retrievals

- All radar and satellite observations objectively analyzed to 6 km
resolution (2 delta-X model grid)

+ Oklahoma mesonet observations (grid permitting)

Additive noise applied to prior state (T, Ty, u, v) where
reflectivity observations indicate strong precipitation

Two sets of experiments are conducted
- RADONLY:  Assimilates only radar and mesonet observations
- RADSAT: Assimilates radar, mesonet, and satellite observations




Example Cases: 8, 9 May 2016

Severe Weather Reports
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- Multiple severe storms in
western OK and KS.

- OK storms are mostly hail
threats, both left and right
movers persist

9 May
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- Eastward shift of severe

convection compared to 8 May

- Several tornados in central
and southeast OK

* One anti-cyclonic tornado




Example Observations
3 km AGL Reflectivity Radial Velocity Liquid Water/Ice Path
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Z Clear sky (CWP=0 Clouds

Clear-air: 0 dB

- Radar reflectivity, radial velocity, and satellite LWP and IWP
assimilated at a single cycle at 2100 UTC 9 May

- Note the large area of clouds indicated by the satellite observations
where no precipitation is detected from the radar

- Total number of observations > 50000
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8 May Surface Analysis: 2200 UTC
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8 May Forecast Statistics: 2200 UTC

90-minute forecast verified against OK mesonet observations
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Bias (Model — Ob) and RMSE calculated for each ensemble member and mean values plotted.
Error bars for RMSE represent the standard deviation of RMSE over all ensemble members.

- Both experiments have a high (warm) bias in solar radiation and
surface temperature.

- RADSAT substantially reduces this bias at the analysis time
with the impact persisting throughout the forecast period




8 May Low-level Vorticity Forecasts

Probability of 0-2 km vertical vorticity > 0.004 s!
90 minute forecast startmg at 2200 UTC
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- RADSAT generates higher vorticity probability swathes in
northern KS associated with the multiple tornado reports in
this region




9 May Surface Analysis: 2000 UTC
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9 May Forecast Statistics: 2000 UTC

90-minute forecasts verified against OK mesonet observations
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Bias (Model — Ob) and RMSE calculated for each ensemble member and mean values plotted.
Error bars for RMSE represent the standard deviation of RMSE over all ensemble members.

- RADSAT lowers bias and errors with respect to RADONLY

experiments, but the magnitude of the difference 1s not as great
as in the 8 May case.

- Note that differences in Arkansas are not included in theses
statistics due to lack of observations




9 May Low-level Vorticity Forecasts

Probability of 0-2 km vertical vorticity > 0.004 s!
90 minute forecast starting at 2000 UTC
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- RADSAT again generates somewhat higher vorticity probabilities than
RADONLY associated with southern Oklahoma tornadoes




Summary
- The Good:

+ Assimilating CWP improved surface thermodynamic conditions for several
experiments

+ This improvement generally corresponded to better forecasts of low-level
vorticity

- The Bad:

« Using non-thinned radar and satellite observations, some evidence of
storm cores weakening

- Assimilating satellite observations also introduces noise in the dynamical
fields in some cases.

- Fixing the Bad:

« Further analyze model configuration, specifically radar and satellite
forward operators

* Determine the optimal combination of satellite and radar data to
assimilate.

* Dumping everything into the model without considering the relationship
between radar and satellite observations is certainty not optimal — work on
adaptive data thinning techniques




Future Considerations

- Challenges:

- Assimilating combined radar and satellite observation data remains
challenging

* Further research in forward operators, data thinning techniques and
new observation types (radiances, polarimetric radar) will be
required going forward

- In addition to clouds, rapid updates of aerosol concentrations will
also have to be considered

- Plans:
- Transition ensemble data assimilation system to GSI-EnKF
- Take advantage of all the satellite QC options

- Integrate GOES-R water vapor radiances and atmospheric motion
vector into data assimilation system.

- Perform experiments for other event types such as land-
falling tropical cyclones and winter weather




Questions

- If you are interesting in participating in this and similar
projects, please contact me: Thomas.Jones@noaa.gov

- CIMMS post-doc jobs available:
http://cimms.ou.edu/index.php/careers/
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