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Experimental set-up

I Non-linear dynamics with nonlinear shallow water model
I Model settings:

1 Mirror boundaries,
2 constant f = 0.0001,
3 259× 259 grid points with spacing 50km
4 leapfrog scheme with time step 125s
5 Asselin filter with 0.01.

I Numerical discretization of the dynamics is such that mass, energy
and momentum are conserved (c.f. Z. Janjic 1984), and enstrophy
for non divergent flow .

I Rossby radius of deformation
√
gh0/f ≈ 2300 km
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Nonlinear shallow water model
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Nonlinear shallow water model

Time evolution of mass, total energy and enstrophy, normalized with
respective initial values, in a nature run.



LETKF experiments

I different localization and the observational coverage
I 32 members + 1 deterministic run, constant inflation = 1.05
I 50 assimilation cycles
I Observations, u, v and h, or u and v, or h only from nature run
I Linear observation operator
I Gaussian observation error with standard deviations of 1.5m/s and

150 m.
I 1h updates



Diagnostics for analysis (ensemble mean)

1 RMSE
2 Normalized energy, enstrophy, mass and divergence.
3 Noise (e.g. Janjic et al. 2011)

N =

∑Nx ,Ny

i,j=1 [∇2u(i , j)]2 + [∇2v(i , j)]2∑Nx ,Ny

i,j=1 [u(i , j)2 + v(i , j)2]

Relative to:
I nature run
I the initial state
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Kinetic energy spectra

Averaged over the first (upper) and last five assimilation cycles (lower).



Prediction

RMSE for u RMSE for h



Prediction

Noise during assimilation and the analysis RMSE are good indicators of
the quality of the prediction.



Conclusion

I Although total energy of the analysis ensemble mean converges
towards the nature run value with time, enstrophy does not.

I LETKF effects energy spectrum, enstrophy, divergence and noise.
I Assimilation of velocity observations bounds enstrophy.
I Observations of height improve divergence but cannot control

enstrophy.
I Multiplicative inflation increases enstrophy and energy at small

scales.
I Noise and RMSE of analysis are good indicators of the success

prediction.

More in:
Zeng,Y. and T. Janjic: Study of conservation laws with the Local
Ensemble Transform Kalman Filter. Q.J.R. Meteorol. Soc.. doi:
10.1002/qj.2829
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