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Objec&ves	

§  Study	effects	of	balance	operator	in	data	assimila&on	schemes:		
•  Hybrid	4DEnVar		
•  Local	ensemble	transform	Kalman	filter	(LETKF)	

§  Demonstrate	how	different	localiza&on	schemes	impact	the	effec&veness	
of	the	balance	operator.		
•  Model	space	 	 	(B	localiza&on)	
•  Observa&on	space	 	(R	localiza&on)	

§  Apply	for	case	studies	
•  Atmosphere:	SPEEDY		
•  Ocean:	ROMS	



Balance	Operator:	Basics	

§  Imbalances	in	ini&al	condi&ons	can	degrade	forecast	skill	through	the	
produc&on	of	fast	moving	gravity	waves		

§  Conven&onally	present	in	varia&onal	schemes		

§  Represents	the	physical	rela&onship	between	the	variables		

§  Rela&onships	are	defined	by	regression	coefficients,	derived	from	
climatological	informa&on	(Wu	etal	2012)	
	Total	=		Balanced	+	Unbalanced	

	 	Δψ					=								Δψ	
	Δχ							=			c		Δψ									+		Δχu	
	ΔT							=			G	Δψ								+		ΔTu	
	Δp							=			Ω	Δψ								+		Δpu	
	Δq							=																									Δq	

	
	

G	at	Sigma	0.34	(SPEEDY)		



Balance	Operator:	Varia&onal	Applica&on	

§  Transforma&on	of	control	variables	
•  Basic	form	

	
•  Precondi&oned	control	
-  Climatological	covariance		P	=	B	=	UUT		with	control	v	

-  Ensemble	covariance										P	=	C	¢	ZZT					with	control		α		&		localiza&on		C	
																										 	 	à	recursive	filter	F	
							Clayton	etal	(2013),	Purser	et	al	(2002)	

Δx =       Γ                                                                         Δz

Δψ
Δχ
ΔT
Δp
Δq

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

I 0 0 0 0
c I 0 0 0
G 0 I 0 0
Ω 0 0 I 0
0 0 0 0 I

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Δψ

Δχu

ΔTu

Δpu

Δq

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Γ  is invertible: 
   Δz = Γ−1Δx
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Balance	Operator:	Varia&onal	Applica&on	

§  Hybrid	4DEnVar	Cost	func&on	formula&on	with	Balance	
	 	 	 	 	 	 	 	 	Clayton	et	al	(2013),Lorenc	et	al	(2015)	

	
	
	
	
	
	
•  4D	increment:	linear	combina&ons	of		
-  4D	ensemble	perturba&ons		
-  sta&c	contribu&on	

•  Climatological	component	contribu&on	is	&me	invariant	here	
•  Balance	is	enforced	by	Γ operator
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Balance	Operator:	LETKF	Applica&on	

§  Cost	func&on	formula&on: 	 	 	 	 	Hunt	et	al	(2007)	

		
	
•  LETKF	analysis	in	transformed	control	

	
Locally,	 	Γ	has	no	effect	on				

•  LETKF	analysis:	aeer	obtaining	increment	in	z	globally	then	apply	Γ	
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Effect	of	Localiza&on	

§  Mo&va&on	
•  For	grid	points	that	are	at	a	large	distance	from	each	other	where	the	true	
correla&on	is	small,	sampling	error	likely	dominates	(Hamill	et	al	2001).		

•  Localiza&on	eliminates	spurious,	long-distance	correla&ons	that	are	likely	
unphysical.		

§  Types	of	localiza&on	
•  B	localiza&on	
Houtekamer	&	Mitchel	2001	
-  Eliminates	correla&on	between	
grid	points	that	are	distant		

- Used	in	EnVar	

•  R	localiza&on	
Hunt	et	al	2007	
-  Reduces	the	influence	of	
observa&ons	that	are	distant	

- Used	in	LETKF		
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Applica&on	to	SPEEDY	(Molteni	2003)	

§  Model	Descrip&on	
•  Simplified	Parameteriza&ons,	primi&vE-Equa&on	DYnamics	
•  Global	atmospheric	GCM	
						of	intermediate	complexity	

§  Version	41	
•  Provided	by	Fred	Kucharski	(ICTP)	
•  3	horizontal	resolu&on	op&ons:		
					T30,	T47,	T63	

•  8	ver&cal	levels	

§  Output	every	hour	(addi&on	by	Miyoshi	and	Greybush)	



Realism	of	SPEEDY	for	Balance	Experiments	

§  Regression	coefficient	Ω:	Δp							=			Ω	Δψ								+		Δpu	

Balance	in	SPEEDY	is	reasonable	to	higher	resolu&on	global	model	
based	on	balance	operator	

T30	SPEEDY	 T574	GFS	



Single	Observa&on	(T):	4DEnVar	(βe=1).	CTL	vs	BAL	
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Slight	adjustment	to	both	streamfunc&on	and	temperature.	
	

Nega&ve	regression	coefficient	at	this	level.	

CTL	–	Base	Configura&on	
without	balance	operator	in	the	ensemble	

BAL	–	With	balance	operator		
applied	in	the	ensemble	

T	-	Contoured	
ψ	-	Shaded	



Single	Observa&on	(T):	4DEnVar.	BAL-	CTRL	

§  Difference	in	both	T	and	ψ	



Single	Observa&on	(T):	4DEnVar.	Balanced	vs	Unbalanced	

15	

Balanced	 Unbalanced	

T	-	Contoured	
		

ΔT							=			G	Δψ								+		ΔTu	



Single	Observa&on	(T):	4DEnVar.	Ver&cal	Structure	

§  Balance	operator	allows	balanced	correla&ons	to	propagate	outside	the	
localiza&on	radius.	

§  Two-way	propaga&on	of	informa&on:	T	Dψ	
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CTL	 BAL	

T	-	Contoured	
ψ	-	Shaded	



Single	Observa&on	(T):	LETKF.	CTL	vs	BAL	
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Streamfunc&on	is	unaffected.	
		

Larger	impact	on	temperature	than	in	the	hybrid	case.	

BAL	CTL	

T	-	Contoured	
ψ	-	Shaded	



Single	Observa&on	(T):	LETKF.	Ver&cal	Structure	

§  No	propaga&on	of	streamfunc&on	informa&on	outside	of	the	localiza&on	
radius.	

§  Temperature	adjusts	to	the	streamfunc&on	only.	
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CTL	 BAL	

T	-	Contoured	
ψ	-	Shaded	



SPEEDY	Cycling	Experiment:	Set-up	

§  Resolu&on:	T63	Truth	with	T30	forecasts	and	analyses	
§  Beta	weigh&ng:	10%	Climatological	+	90%	Ensemble	
§  Ensemble	Size:	20	members	
§  Infla&on:		Fixed	at	8%		
§  Experiment	length:	2	years	(January	1982	–	January	1984)	
§  Observa&ons:	simulated	radiosonde	network	and	satellite	observa&ons	

Radiosonde	Network	(416	Sta&ons)	

Observa&on	Type	 Observa&on	Error	
u 1	m/s	
v 1	m/s	
T 1	K	
P 100	Pa	
q 10-4	kg/kg	



SPEEDY	Cycling	Experiment:	Set-up	

§  Satellite	
•  AIRS	on	Aqua	and	SeaWinds	on	Quikscat	
•  5	minute	intervals	with	linear	&me	interpola&on	to	an	hourly	T63	truth	

•  AIRS:		
-  T	profile:	2	K	error	
-  q	profile	up	to	middle	
model	level:	2x10-4	kg/kg	
error	

•  SeaWinds:	
-  u	and	v	at	lowest	model	
level:	1.5	m/s	error	



Model	Bias:	T63	vs	T30	

§  Top	level	u,	JJA	

•  Stratospheric	diffusion	coefficients	were	not	adjusted	for	the	higher	
resolu&on.	

•  The	stratosphere	is	more	damped	in	the	T30	model	than	in	the	T63.	
•  If	severe	(regional)	bias	is	untreated,	balance	operator	can	degrade	the	
performance.		

	

T63	 T30	



SPEEDY	Cycling	Experiment:	Hybrid.	Analysis	RMSE	
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•  Greatest	posi&ve	impact	where	the	balance	operator	works	on	the	full	column: 
T and χ 	

•  Nega&ve	impact	where	the	model	bias	is	prevalent:	stratospheric	wind	fields	
	

ψ	 χ	 T	

CTL	
BAL	

Due	to	severe	model	bias	



SPEEDY	Cycling	Experiment:	Hybrid.	Analysis	RMSE 
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Balance	operator	has	a	greater	impact	in	the	southern	hemisphere	

Lower	percentage	of	radiosonde	data	

NH	 SH	

CTL	
BAL	



SPEEDY	Cycling	Experiment:	Hybrid.	Anomaly	Correla&on	
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BAL	–	CTL	
>	0	BAL	Improves	
<	0	BAL	Degrades	T	ψ	

Forecast	Day	
Forecast	skill	for	temperature	and	tropospheric	

streamfunc&on	are	improved	for	all	forecast	lengths.	



SPEEDY	Cycling	Experiment:	LETKF.	Analysis	RMSE	
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The	balance	operator	moves	the	temperature	away	from	the	observa&ons		
to	be	brought	into	balance	with	the	streamfunc&on.	

	

Nega&ve	impact	on	streamfunc&on	is	through	integra&on	only		
since	the	balance	operator	does	not	impact	it.	

	
	

χ	ψ	 T	

CTL	
BAL	

Effect	of	model	bias	on	balance:	
Not	as	severe	as	2-way	interac&on	in	stratosphere	;	overall	not	as	good	as	hybrid			



SPEEDY	Cycling	Experiment:	LETKF.	Anomaly	Correla&on	
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BAL	–	CTL	
>	0	BAL	Improves
<	0	BAL	DegradesT	

• Stratospheric	improvement	is
dominated	by	the	southern
polar	region.

• The	forecast	skill	is	degraded	for
short	forecast	lead	&mes.
• Temperature	adjusts	to

streamfunc&on.
• At	longer	lead	&mes,	the

forecast	skill	is	improved.
• Is	the	improvement	due	to	the

balance	operator?



Measure	of	Balance	

31	

	
Global	surface	pressure	tendency	is	significantly	reduced	in	the	Hybrid	case.		

Hybrid	 LETKF	

Time	

BAL	–	CTL	
>	0	BAL	Increases	Imbalance	
<	0	BAL		Reduces		Imbalance	



Summary	

§  Study	of	balance	operator	to	two	ensemble	data	assimila&on	schemes:	
•  Hybrid	4DEnVar	and	LETKF	
•  Localiza&on	in	model	space	and	observa&on	space	

§  Hybrid	4DEnVar	provides	addi&onal	balance	by	propaga&ng	informa&on	
outside	of	the	tradi&onal	localiza&on	radius	and	preserves	the	balanced	
informa&on	provided	by	the	ensembles.	

§  The	type	of	localiza&on	in	ensemble	data	assimila&on	methods	impacts	the	
effec&veness	of	applying	the	balance	operator	to	the	ensemble,	with	the	
Hybrid	4DEnVar	showing	greater	improvements	than	the	LETKF.	
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