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Objectives

= Study effects of balance operator in data assimilation schemes:

* Hybrid 4DEnVar
* Local ensemble transform Kalman filter (LETKF)

= Demonstrate how different localization schemes impact the effectiveness
of the balance operator.

* Model space (B localization)
e Observation space (R localization)

= Apply for case studies
e Atmosphere: SPEEDY



Balance Operator: Basics

Imbalances in initial conditions can degrade forecast skill through the

production of fast moving gravity waves

Conventionally present in variational schemes

Represents the physical relationship between the variables

Relationships are defined by regression coefficients, derived from
G at Sigma 0.34 (SPEEDY)

climatological information (Wu etal 2012)
Total = Balanced + Unbalanced

AY = AY

A = ¢ Ay + Ay
AT = GAY + ATY
Ap = QAY + ApY
Ag = Aqg

Height (sigma)

60S

60N

|
-35 -275 -2 -125 -05 0.5

T T [ [
125 2 275 3.5 Ks/m*2 (s1e=7)



Balance Operator: Variational Application

» Transformation of control variables

* Basic forn&x: r Az I' is invertible:
/A Az =T 'Ax

Ay 1 o oo o\?Y
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* Preconditioned control
— Climatological covariance P =B = UU" with control v

AX =TUv
— Ensemble coh\gariance P=Co-ZZ" with control a & localization C
AX = I‘Z Fo™ o(22)7 = recursive filter F
m=1

Clayton etal (2013), Purser et al (2002)



Balance Operator: Variational Application

= Hybrid 4DEnVar Cost function formulation with Balance
Clayton et al (2013),Lorenc et al (2015)

K
J(v,a)=p° %VTV +B° %ocToc + Z%(dk ~H,Ax,)'R,'(d, —H AX,)
k=1

M
Ax, =T(BUV+B°) Fa" o (22)7)
m=1

e 4D increment: linear combinations of
— 4D ensemble perturbations
— static contribution

e Climatological component contribution is time invariant here
* Balance is enforced by I' operator



Balance Operator: LETKF Application

= Cost function formulation:

M —1 <1 )
J(W)= TwTw + ZE(dk ~Y’w) R, 7'(d, - Y’w)
k=1

Y =HT 2"

= HX"

e LETKF analysis in transformed control

AZ: =Z°w®
22 = Z°W°

asd

w

(W)~

Locally, I has no effecton w® and Wa

Hunt et al (2007)

— (Wa )2 YIER?dk

V2 J(w)

I' is invertible:
Az =T"Ax

» LETKF analysis: after obtaining increment in z globally then apply I’

AX; =TAz,
X; =TZ;

a _ =vb-a
z, =2ZW
a _ =sb a
Z: =2Z°W




Effect of Localization

= Motivation

* For grid points that are at a large distance from each other where the true
correlation is small, sampling error likely dominates (Hamill et al 2001).

* Localization eliminates spurious, long-distance correlations that are likely
unphysical.

= Types of localization

* B localization * Rlocalization
Houtekamer & Mitchel 2001 Hunt et al 2007
— Eliminates correlation between — Reduces the influence of
grid points that are distant observations that are distant
— Used in EnVar — Used in LETKF
F 0 R'=p., °R"
T




Application to SPEEDY (Molteni 2003)

= Model Description
* Simplified Parameterizations, primitivE-Equation DYnamics

* Global atmospheric GCM
of intermediate complexity

U(sig=0.2), 1982/01/01 00z

= Version 41
* Provided by Fred Kucharski (ICTP)
* 3 horizontal resolution options:
T30, T47, T63
» 8 vertical levels

-20 —10 0 10 20 30 40 50 &0 70 mjs

= Qutput every hour (addition by Miyoshi and Greybush)
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Realism of SPEEDY for Balance Experiments
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= Regression coefficient Q: Ap =

Psi/Ps Regression Coefficient, T30 SPEEDY

T30 SPEEDY
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Balance in SPEEDY is reasonable to higher resolution global model

based on balance operator



Single Observation (T): 4DEnVar (B¢=1). CTL vs BAL

T - Contoured

) - Shaded
CTL — Base Configuration BAL — With balance operator
without balance operator in the ensemble applied in the ensemble
Analysis Increment, Level 1, CTL, T(contour), Psi(shaded) n Analysis Increment, Level 1, BAL, T(contour), Psi(shaded)
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Slight adjustment to both streamfunction and temperature.

Negative regression coefficient at this level. .



Single Observation (T): 4DEnVar. BAL- CTRL

= Difference in both Tand ¢

Analysis Increment, Level 1, BAL — CTL, T(contour), Psi(shaded)
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Single Observation (T): 4DEnVar. Balanced vs Unbalanced

Balanced

Unbalanced

T - Contoured

Unbalanced Part, Level 1, BAL, Temperature

Balanced Part, Level 1, BAL, Temperature
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T’ - Contoured
Single Observation (T): 4DEnVar. Vertical Structurg?_312ded

= Balance operator allows balanced correlations to propagate outside the
localization radius.

* Two-way propagation of information: T Sy

Analysis Increment, CTL, T(contour), Psi(shaded)
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60N

T - Contoured

Single Observation (T): LETKF. CTLvs BAL [ -5haded

Analysis Increment, LETKF, CTL, T(contour), Psi(shaded) Analysis Increment, LETKF, BAL, T(contour), Psi(shaded)
ON

55N 1

50N 1

35N

30N

25N 1

20N

= ~
CTL * K\ X
LY N

120 1108 100W 90w 80W 700 60W S0W 40W S0W 40W
— I [ |
-0.3 -0.1 0.1 0.3 0.5 0.7 m*2/s

Streamfunction is unaffected.

Larger impact on temperature than in the hybrid case.
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T - Contoured

Single Observation (T): LETKF. Vertical Structure[#-3haded

= No propagation of streamfunction information outside of the localization
radius.

» Temperature adjusts to the streamfunction only.

Analysis Increment, CTL, T(contour), Psi(shaded)

Analysis Increment, BAL, T(contour), Psi(shaded)
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SPEEDY Cycling Experiment: Set-up

Resolution: T63 Truth with T30 forecasts and analyses

Beta weighting: 10% Climatological + 90% Ensemble

Ensemble Size: 20 members
Inflation: Fixed at 8%
Experiment length: 2 years (January 1982 — January 1984)

Observations: simulated radiosonde network and satellite observations

e

Radiosonde Network (416 Stations)

Observation Type Observation Error

u 1m/s

1m/s

1K

)
T

P 100 Pa
q 10* kg/kg




SPEEDY Cycling Experiment: Set-up

= Satellite
e AIRS on Aqua and SeaWinds on Quikscat
* 5 minute intervals with linear time interpolation to an hourly T63 truth

0B NETWORK (03-09z), RAOB(blue), QUIKSCAT(red), AQUA(green)

* AIRS:
— T profile: 2 K error

— g profile up to middle
model level: 2x10* kg/kg
error

e SeaWinds:

— u and v at lowest model
level: 1.5 m/s error




Model Bias: T63 vs T30

= Top level u, JIA

T63 T30

Nature T63, u(sig=0.02), JJA Nature T30, u(sig=0.02), JJA
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Stratospheric diffusion coefficients were not adjusted for the higher
resolution.

The stratosphere is more damped in the T30 model than in the T63.

If severe (regional) bias is untreated, balance operator can degrade the
performance.



SPEEDY Cycling Experiment: Hybrid. Analysis RMSE
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Greatest positive impact where the balance operator works on the tull column:

T and x

Negative impact where the model bias is prevalent: stratospheric wind fields
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SPEEDY Cycling Experiment: Hybrid. Analysis RMSE
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Balance operator has a greater impact in the southern hemisphere

Lower percentage of radiosonde data
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SPEEDY Cycling Experiment: Hybrid. Anomaly Correlation

BAL-CTL
> 0 BAL Improves
Ll) 7L< 0 BAL Degrades
Anomaly Correlation by Forecast Day, Psi, BAL — CTL Anomaly Correlation by Forecast Day, T, BAL — CTL
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> Forecast skill for temperature and tropospheric

Forecast Day streamfunction are improved for all forecast lengths.
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SPEEDY Cycling Experiment: LETKF. Analysis RMSE

- CITL
— BAL

Effect of model bias on balance:
Not as severe as 2-way interaction in stratosphere ; overall not as good as hybrid
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The balance operator moves the temperature away from the observations
to be brought into balance with the streamfunction.

Negative impact on streamfunction is through integration only

since the balance operator does not impact it.
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SPEEDY Cycling Experiment: LETKF. Anomaly Correlation

BAL - CTL

> 0 BAL Improves
T < 0 BAL Degrades

Stratospheric improvement is Anomaly Correlation by Forecast Day, T, BAL — CTL
dominated by the southern

polar region.

The forecast skill is degraded for
short forecast lead times.

 Temperature adjusts to
streamfunction.

Height (sigma)

At longer lead times, the
forecast skill is improved.

Is the improvement due to the
balance operator?
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Measure of Balance

BAL—-CTL
> 0 BAL Increases Imbalance
< 0 BAL Reduces Imbalance

Global Ps Tendency Over Time, BAL — CTL Global Ps Tendency Over Time, BAL — CTL
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Global surface pressure tendency is significantly reduced in the Hybrid case.
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Summary

= Study of balance operator to two ensemble data assimilation schemes:
* Hybrid 4DEnVar and LETKF
* Localization in model space and observation space

= Hybrid 4DEnVar provides additional balance by propagating information
outside of the traditional localization radius and preserves the balanced
information provided by the ensembles.

= The type of localization in ensemble data assimilation methods impacts the
effectiveness of applying the balance operator to the ensemble, with the
Hybrid 4ADEnVar showing greater improvements than the LETKEF.
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