Data Assimilation for NWP with the ICON Global Model

A.Rhodin, H.Anlauf, R.Faulwetter, <u>A.Fernández del Río</u>, A.Cress, J.Ambadan, R.Potthast, M.Lange, P.Gerhard, M.Denhard, F.Fundel...

Deutscher Wetterdienst (DWD)

ISDA 2016, Reading, 22/07/2016

ICON model

Operational global model since January 2015! ICOsahedral Non-hydrostatic global model. Developed jointly by DWD and MPI-M.

- Defined on a triangular unstructered icosahedral grid.
- Non-hydrostatic dynamical core.
- Grid point model (non-spectral).
- Improved physics.
- Two way nests, eventually to replace limited area models.
- 90 z-coordinate levels up to 75 km (aprox. 0.026hPa).

Data assimilation for ICON

Variational 3DVar

Deterministic analysis with a climatological covariance matrix.

- \times Uncertainty is nearly static.
- \times Not situation dependent.

Data assimilation for ICON

Variational 3DVar

- Deterministic analysis with a climatological covariance matrix.
- \times Uncertainty is nearly static.
- × Not situation dependent.

LETKF EDA

- Ensemble of initial states that characterize the analysis probability distribution (Hunt et al 2007).
- \checkmark Uncertainty = Ensemble spread.
- ✓ Dynamic and situation dependent uncertainty.
- $\times~$ Finite size \Rightarrow spurious correlations \Rightarrow localization.
- \times Ensemble mean is not a physical state.

Hybrid EnVar

The analysis is computed as a deterministic 3DVar with part of the uncertainty coming from the LETKF: $B = \alpha B_{LETKF} + (1 - \alpha)B_{NMC}$ (Buehner and Carron 2007).

- High resolution deterministic physical estate.
- Flow dependent uncertainty.
- Uncertainty also dependent on climatology.

Hybrid EnVar

The analysis is computed as a deterministic 3DVar with part of the uncertainty coming from the LETKF: $B = \alpha B_{LETKF} + (1 - \alpha)B_{NMC}$ (Buehner and Carron 2007).

- High resolution deterministic physical estate.
- Flow dependent uncertainty.
- Uncertainty also dependent on climatology.

Operational since January 2016!

Hybrid EnVar

The analysis is computed as a deterministic 3DVar with part of the uncertainty coming from the LETKF: $B = \alpha B_{LETKF} + (1 - \alpha)B_{NMC}$ (Buehner and Carron 2007).

- High resolution deterministic physical estate.
- Flow dependent uncertainty.
- Uncertainty also dependent on climatology.

Operational since January 2016!

Particle Filters

Currently under active research.

Current operational setup

Deterministic setup

- 13 km horizontal resolution, 90 vertical levels.
- 6.5 km nest over Europe with 60 vertical levels.
- 3 hourly updates.
- Incremental analysis update with a symmetric 3 h window.
- 3 hourly snow analysis.
- Sea surface temperature and soil moisture analysis daily at 0 UTC.
- Snow, SST and SMA additional analysis on the nest.
- Weight of the ensemble B: 0.75.
- 7 day long forecasts twice daily at 0 and 12 UTC.

Current operational setup

Ensemble setup

- 40 members, 40 km resolution (20 km over Europe).
- 3 hourly updates, 3 h symmetric IAU window.
- Deterministic snow analysis used for all members.
- SST perturbations (1K; 100, 1000 km, 24 h).
- Mean SMA relaxes to deterministic SMA.
- Relaxation to prior perturbations with 0.75 coefficient.
- Additive inflamation, bounds depending on the layer (0.9 1.5).
- Horizontal localization: 300 km.
- Vertical localization: 0.3logp (surface) to 0.8logp (top).
- 7 day long forecasts twice daily at 0 and 12 UTC (not used).

Bias and RMSE for geopotential.

Bias and RMSE for geopotential.

Bias and RMSE for temperature.

Bias and RMSE for temperature.

RMSE 850 hPa temperature, 24 hour forecast, northern hemisphere.

RMSE 500 hPa geopotential, 24 hour forecast, northern hemisphere.

925 hPa wind speed, 24 hour forecast, northern hemisphere.

- Hybrid EnVar is now operational at DWD.
- To that effect an ensemble DA (LETKF) has been developed.
- Still many things to try and improve in our LETKF! physical parametrization perturbations, soil moisture and snow perturbations, improved sea surface temperature perturbations, observation perturbations, improved localization, fine tuning...
- The ICON EPS under development already looks promising.
- Short term goals: improved use of satellite data (and other).
- Long term goals: particle filters?

Thanks for your attention!

BACY (Basic Cycling) Environment

Cycling is crucial!

Bias and RMSE for relative humidity.

Bias and RMSE for relative humidity.

Bias and RMSE for wind speed.

Bias and RMSE for wind speed.

Bias and RMSE for wind direction.

2015/11/01 - 2015/11/30 VAL: 12 UTC, INI: ALL, DOM: NH

Bias and RMSE for wind direction.

Verification against radiosondes: spread/skill

Geopotential and temperature, northern hemisphere.

Verification against radiosondes: spread/skill

Relative humidity and u-component, northern hemisphere.

Verification against radiosondes: summary

EnVar vs 3DVar.

RMSE, percentual change aggregated to all lead times.

Verification against radiosondes: summary

EPS vs EnVar.

RMSE, percentual change aggregated to all lead times.

700 hPa wind speed, 24 hour forecast, northern hemisphere.

RMSE 250 hPa temperature, 24 hour forecast, tropics.

100 hPa geoptential, 24 hour forecast, southern hemisphere.

RMSE with lead time, June 2014 vs 2016, northern hemisphere.

RMSE with lead time, June 2014 vs 2016, southern hemisphere.

