Combining data assimilation and moving meshes for moving boundary processes: application to ice sheet modelling

Bertrand Bonan, Mike Baines, Nancy Nichols and Dale Partridge

University of Reading

ISDA 2016, Reading - 18 July, 2016

National Centre for
Earth Observation
NATURAL ENVIRONMENT RESEARCH COUNCIL

Outline

(1) Motivations

(2) Moving meshes
(3) Data assimilation

Outline

(1) Motivations
(2) Moving meshes

(3) Data assimilation

Motivation: estimate the evolution of moving boundary problems

Many applications can be modelled by moving boundary problems.

a

Motivation: assimilate new sources of observations

Figure: Retreat of the Rhone glacier, comparison between postcard from 1870 and actual view in Gletsch, Switzerland (Image credit: Dominic Buettner for The New York Times)

Outline

(1) Motivations

(2) Moving meshes

(3) Data assimilation

A simplified model

Radially-symmetric grounded ice sheet under Shallow Ice Approximation

$$
\left\{\begin{array}{rlrl}
\partial_{t} h & =m-\frac{1}{r} \partial_{r}\left(r h U_{r}\right) & & r \in\left(0, r_{l}(t)\right) \\
U_{r} & & =-c h^{n+1}\left|\partial_{r} h\right|^{n-1} \partial_{r} h & \\
U_{r} & =\partial_{r} h=0 & & r=0 \\
h(0, r) & \left.=r_{l}(t)\right) \\
h\left(t, r_{l}(t)\right) & =0 & & r \in\left(0, r_{l}(0)\right) \\
U_{0}(r) & & t \geq 0
\end{array}\right.
$$

with:

- r radius between 0 (ice divide) and $r_{l}(t)$ (ice sheet margin)
- $h(t, r)$ ice thickness
- $U_{r}(t, r)$ vertically averaged ice velocity
- $m(t, r)$ surface mass balance
- $c>0$ constant, n exponent $(n=3)$

Moving mesh method

- Physical quantities (h, \ldots) calculated on a moving grid with a fixed number of evolving radii $\widehat{r}_{i}(t)$.
- One moving radius for
- ice divide $\widehat{r}_{1}(t)=0$
- ice sheet margin $\widehat{r}_{n_{r}}(t)=r_{l}(t)$
- Strategy:

At given time, geometry of ice sheet known

- calculate velocity of moving radii.
\longrightarrow next time step
- update radii
- update ice sheet geometry

Evolution of moving points over time (ice margin in red)

An example with 100 moving points

Evolution of the ice sheet at time $\mathrm{t}=10000 \mathrm{a}$

Trajectory of moving points

Conserved mass fraction

- Trajectories of moving radii are defined such that relative volume fraction μ_{i} between 0 and $\widehat{r}_{i}(t)$ kept constant in time.

$$
\mu_{i}=\frac{2 \pi}{\theta(t)} \int_{0}^{\widehat{r}_{i}(t)} r h(t, r) d r \quad \text { with } \quad \theta(t)=2 \pi \int_{0}^{r_{l}(t)} r h(t, r) d r
$$

- Velocity of moving radii obtained implicitly by differentiating

$$
\frac{d}{d t}\left(\int_{0}^{\widehat{r}_{i}(t)} r h(t, r) d r\right)=\mu_{i} \frac{d}{d t}\left(\int_{0}^{r_{l}(t)} r h(t, r) d r\right)
$$

- The ice thickness profile is updated using

$$
h(t, \widehat{r}(t))=\frac{\theta(t)}{\pi} \frac{d \mu(\widehat{r})}{d\left(\widehat{r}^{2}\right)}
$$

Outline

(1) Motivations

(2) Moving meshes

(3) Data assimilation

What we estimate

Location of moving points and ice thickness at these locations (number of grid points $n_{r}=21$)

$$
\mathbf{x}=\binom{\mathbf{x}_{h}}{\mathbf{x}_{r}} \quad \text { with } \quad \mathbf{x}_{h}=\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n_{r}-1}
\end{array}\right), \mathbf{x}_{r}=\left(\begin{array}{c}
\widehat{r}_{2} \\
\vdots \\
\widehat{r}_{n_{r}}
\end{array}\right)
$$

What we observe

Observations are obtained from a reference run at different times ($t=1,2, \ldots, 10 \mathrm{yr}$) and perturbed with a Gaussian noise:

- surface ice velocity u_{s} at 20 different locations, $\sigma_{u}^{o}=30 \mathrm{~m} / \mathrm{yr}$, uncorrelated noise.
- position of ice sheet margin, $\sigma_{r}^{\circ}=50 \mathrm{~km}$.

Reference run with a warming climate

Initial ensemble

The $N_{e}=200$ members of the initial ensemble are generated from a background state with an added Gaussian noise $\mathcal{N}(0, B)$:

- Background state: $x^{b}=0.95 x^{\text {ref }}(0)$.
- Background covariance matrix:

$$
\mathbf{B}=\left(\begin{array}{cc}
\mathbf{B}_{h} & \mathbf{B}_{r h}^{T} \\
\mathbf{B}_{r h} & \mathbf{B}_{r}
\end{array}\right)
$$

- Cross-covariances $\mathrm{B}_{\text {rh }}$ set to zero.
- Covariances for ice thickness \mathbf{B}_{h} : SOAR function with $\sigma_{h}=200 \mathrm{~m}$ and length scale $L_{h}=240 \mathrm{~km}$ for the spatial correlations.
- Covariances for point locations \mathbf{B}_{r} : SOAR function with $\sigma_{r}=60 \mathrm{~km}$ (and reduced variance for points close to $r=0$) and length scale $L_{r}=240 \mathrm{~km}$ for the spatial correlations.

DA results with inflation 1.10

DA results with inflation 1.10

DA results with inflation 1.10

Conclusion and Prospects

Conclusions:

- Successful combination of DA with moving meshes in 1d is done by including the position of grid nodes in the state vector.
- Ensemble Kalman filter gives information on cross-covariance between the grid and physical variables.
- This approach allows the straightforward assimilation of the position of boundaries.

Prospects:

- Extend the approach to 2d cases.
- Generalize the approach to other moving boundary problems.

Thank you for your attention!

