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Motivation: estimate the evolution of moving boundary
problems

Many applications can be modelled by moving boundary problems
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Motivation: assimilate new sources of observations

Figure: Retreat of the Rhone glacier, comparison between postcard from 1870 and
actual view in Gletsch, Switzerland (Image credit: Dominic Buettner for The New
York Times)
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A simplified model

Radially-symmetric grounded ice sheet under Shallow Ice Approximation

[ oh = m- %a,(r hU,) re (0,n(t)
U, = —ch™18,h"18,h r € (0,n(t))
U = 0h=0 r=0
h(0,r) = ho(r) r € (0,r(0))
h(t,n(t)) = 0 t=>0

with:
o r radius between 0 (ice divide) and r/(t) (ice sheet margin)
o h(t,r) ice thickness
o U,(t,r) vertically averaged ice velocity
e m(t, r) surface mass balance
@ ¢ > 0 constant, n exponent (n = 3)
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Moving mesh method

o Physical quantities (h, ) Evolution of an ice sheet over time
calculated on a moving grid with
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An example with 100 moving points

Evolution of the ice sheet at time t = 10000 a
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Trajectory of moving points

... . .
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Conserved mass fraction

@ Trajectories of moving radii are defined such that relative volume
fraction p; between 0 and 7;(t) kept constant in time.

on  [Ti(D) n(t)
Wi = / rh(t, r) dr with 9(1’) =27 / rh(t7 I’) dr
0(t) Jo 0

@ Velocity of moving radii obtained implicitly by differentiating

d ri(t) d r(t)
o / rh(t,r)dr = i / rh(t,r)dr
0 0

@ The ice thickness profile is updated using

h(e. (o) = 2200
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What we estimate

Location of moving points and ice thickness at these locations
(number of grid points n, = 21)
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What we observe

Observations are obtained from a reference run at different times
(t=1,2,...,10 yr) and perturbed with a Gaussian noise:

e surface ice velocity us at 20 different locations, o = 30 m/yr,
uncorrelated noise.

@ position of ice sheet margin, ¢ = 50 km.

Reference run with a warming climate
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Initial ensemble

The N, = 200 members of the initial ensemble are generated from a
background state with an added Gaussian noise A/ (0, B):

o Background state: x” = 0.95x"(0).

@ Background covariance matrix:

T
B = Bh Brh
Brh Br
@ Cross-covariances B, set to zero.

@ Covariances for ice thickness Bj: SOAR function with o) = 200 m
and length scale L, = 240 km for the spatial correlations.

@ Covariances for point locations B,: SOAR function with ¢, = 60 km
(and reduced variance for points close to r = 0) and length scale
L, = 240 km for the spatial correlations.
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DA results with inflation 1.10

Ice sheet geometry

end assimilation window (t = 10 yr)
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DA results with inflation 1.10

Surface velocity (end assimilation window, t =10 a)
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DA results with inflation 1.10

Est. standard deviations at 10 yr
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Conclusion and Prospects

Conclusions:

@ Successful combination of DA with moving meshes in 1d is done by
including the position of grid nodes in the state vector.

@ Ensemble Kalman filter gives information on cross-covariance between
the grid and physical variables.

@ This approach allows the straightforward assimilation of the position
of boundaries.

Prospects:

@ Extend the approach to 2d cases.

o Generalize the approach to other moving boundary problems.
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Thank you for your attention!
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