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Motivation: estimate the evolution of moving boundary
problems

Many applications can be modelled by moving boundary problems.
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Motivation: assimilate new sources of observations

Figure: Retreat of the Rhone glacier, comparison between postcard from 1870 and
actual view in Gletsch, Switzerland (Image credit: Dominic Buettner for The New
York Times)
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A simplified model

Radially-symmetric grounded ice sheet under Shallow Ice Approximation

∂th = m − 1
r
∂r (r h Ur ) r ∈ (0, rl(t))

Ur = − c hn+1 |∂rh|n−1 ∂rh r ∈ (0, rl(t))

Ur = ∂rh = 0 r = 0

h(0, r) = h0(r) r ∈ (0, rl(0))

h(t, rl(t)) = 0 t ≥ 0

with:
r radius between 0 (ice divide) and rl(t) (ice sheet margin)
h(t, r) ice thickness
Ur (t, r) vertically averaged ice velocity
m(t, r) surface mass balance
c > 0 constant, n exponent (n = 3)
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Moving mesh method

Physical quantities (h, ...)
calculated on a moving grid with
a fixed number of evolving radii
r̂i (t).

One moving radius for
ice divide r̂1(t) = 0
ice sheet margin r̂nr (t) = rl(t)

Strategy:
At given time, geometry of ice
sheet known

calculate velocity of moving
radii.

−→ next time step
update radii
update ice sheet geometry
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An example with 100 moving points
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Trajectory of moving points
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Conserved mass fraction

Trajectories of moving radii are defined such that relative volume
fraction µi between 0 and r̂i (t) kept constant in time.

µi =
2π
θ(t)

∫ r̂i (t)

0
r h(t, r) dr with θ(t) = 2π

∫ rl (t)

0
r h(t, r) dr

Velocity of moving radii obtained implicitly by differentiating

d

dt

(∫ r̂i (t)

0
r h(t, r) dr

)
= µi

d

dt

(∫ rl (t)

0
r h(t, r) dr

)

The ice thickness profile is updated using

h(t, r̂(t)) =
θ(t)

π

dµ(r̂)

d(r̂2)
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What we estimate

Location of moving points and ice thickness at these locations
(number of grid points nr = 21)

x =

(
xh
xr

)
with xh =

 h1
...

hnr−1

 , xr =

 r̂2
...
r̂nr
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What we observe

Observations are obtained from a reference run at different times
(t = 1, 2, . . . , 10 yr) and perturbed with a Gaussian noise:

surface ice velocity us at 20 different locations, σou = 30 m/yr,
uncorrelated noise.
position of ice sheet margin, σor = 50 km.
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Initial ensemble

The Ne = 200 members of the initial ensemble are generated from a
background state with an added Gaussian noise N (0,B):

Background state: xb = 0.95 xref (0).

Background covariance matrix:

B =

(
Bh BT

rh

Brh Br

)
Cross-covariances Brh set to zero.

Covariances for ice thickness Bh: SOAR function with σh = 200 m
and length scale Lh = 240 km for the spatial correlations.
Covariances for point locations Br : SOAR function with σr = 60 km
(and reduced variance for points close to r = 0) and length scale
Lr = 240 km for the spatial correlations.
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DA results with inflation 1.10
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DA results with inflation 1.10
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DA results with inflation 1.10
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Conclusion and Prospects

Conclusions:

Successful combination of DA with moving meshes in 1d is done by
including the position of grid nodes in the state vector.

Ensemble Kalman filter gives information on cross-covariance between
the grid and physical variables.

This approach allows the straightforward assimilation of the position
of boundaries.

Prospects:

Extend the approach to 2d cases.

Generalize the approach to other moving boundary problems.
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Thank you for your attention!
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