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Horizontal resolution:
– 5.5 km MESAN EURO4M 

Time resolution:
– Hourly for the period 1982– 2013.

Observations:
– CMSAF polar orbit AVHRR cloud mask 1982 – 2009.
– CMSAF geostationary SEVIRI cloud mask 2004 – 2012.
– CMSAF new polar orbit & geostationary CM SAF cloud cover 

probability product for MFG (1983-2005) and MSG (2004-2013)
                               (in production MeteoSwiss)

First guess (alternatives):
– EURO4M 22 km HIRLAM 3DVar, 1982 – 2013.

       – HIRLAM EURO4M 22 km interpolated to 5.5 km using LSM

European cloud cover reanalysis using
best available data at any given time, 1982 - 2013



Processing chain
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Use the quality and scan geometry information available in 
CMSAF products to calculate weights:

Calculate cloud fractional cover as a weighted fraction of 
cloudy pixels within a HIRLAM grid box:

Super observations

w=f (quality flags , sat angles , timedelta)

CFC=
∑ wi CM i

∑ w i



W
ic
C

i 

∑
i
W

ic
CM

i 
≥ 0.99

∑
i
W

ic 
≥ 4

 

 

W
ic
CM

i 

W
ic
( timeliness, view angle, cumulative quality flag )

HIRLAM EURO4M Cloud Fraction is used as “gap-filler” in 
grids where no CM observations available
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Super observations, continued ...
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xa=xb+K ( y−H (xb))
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Optimal Interpolation

B matrix 
–  Diagonal in Fourier space, i.e. homogeneous
–  HIRLAM NMC statistics (fc differences) as the “first-guess” for 

B
 and L

B

R matrix (spatially correlated errors)
– Diagonal in Fourier space, i.e. homogeneous
– The “first-guess” : 

R
 = 0.1*

B
  and L

R 
= 0.5 L
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Re-estimate statistics based on Desroziers diagnostics from the “pilot” run

H operator : identity matrix 
 – extract Cloud Fraction  from HIRLAM EURO4M forecasts



Estimation of statistics
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Desroziers diagnostics

In the presented results 
the misfit due to cross-
correlations is not 
addressed 

Tends to underestimate R and 
introduce more energy on 
larger scales



Optimal Interpolation in Fourier Space
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D*=B+R*

Total 1D spectra : D, B, R Mean 1D filtering and misfit 
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Comparison with SYNOP obs for 2009

+ Analysis has lower std 
than both the first-guess 
and super-observations.
–  On average the 
analysis has too much 
clouds against SYNOP 



Mean innovation error : y_so-x_b Mean analysis error : y_so-x_an

Total cloud cover (03 UTC 2009)
 (one year average)

Limitations of the optimal interpolation:

“Obs-minus-Forecast” “Obs-minus-Analysis”

Note clear response to orography in the error statistics due 
to homogeneity assumptions



Mean background field (1 year average) 
      

Scale-dependent decomposition 

Decomposition on three overlapping 
spectral bands (scales)

66

Large 
scales

Medium 
scales

Small 
scales

Total cloud cover 
03 UTC 2009
(one year average;
Background 
forecast)

1936
 km

330
 km

66
 km

5 30
 

150
 

noise



Sample estimate of background error 

Decomposition of background error variability 
on scales

Scale-dependent decomposition
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Data coverage Innovation 

Super-observation Background 



Analysis (within scale contribution only)
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Impact of scale dependent analysis



– Super observations and OI analysis on 5.5 grid
– One more overlapping band to model convective scale 
phenomena?

What next?

Lessons learned....

– Space/Scale-dependent decomposition can efficiently be used to model  
local in space phenomena 

– Space/Scale-dependent decomposition allows to model “cross-scale” 
dependencies and to relax homogeneity assumption staying in spectral 
space. 

– The decomposition on the overlapping bands will induce and impact  
“cross-scale” correlations 

– Space/scale localization seems to be a promising technique for flow-
dependent data assimilation. However more research is needed to 
understand the impact of space-scale dependent localization on the spectra 
and the error propagation properties.  

To conclude....
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