

Simulation of error cycling

Loïk BERRE, Météo-France/CNRS ISDA, Reading, 21 July 2016

with inputs from R. El Ouaraini, L. Raynaud, G. Desroziers, C. Fischer

Motivations and questions

EDA and innovations for diagnosing contributions (background errors, observation errors, model errors) in error cycling over one week.

Revisit formalism & some previous EDA experiments in the litterature :

- \Rightarrow Respective global amplitudes of these 3 error sources ?
- \Rightarrow Evolution of error contributions during the cycling ?

EDA context at Météo-France

Quasi-linear expansion of forecast errors

Old background errors / Recent observation errors

Observation errors / Model errors

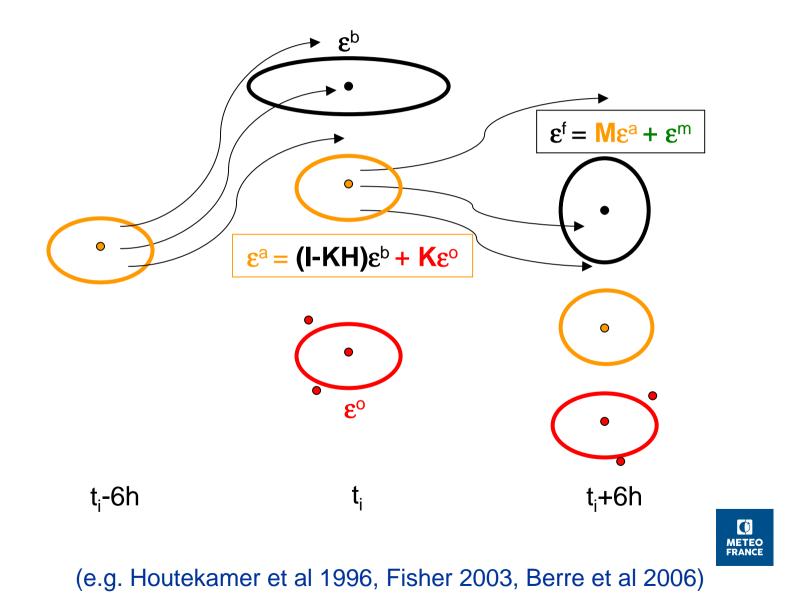
EDA context at Météo-France

Quasi-linear expansion of forecast errors

Old background errors / Recent observation errors

Observation errors / Model errors

Ensemble of perturbed Data Assimilations (EDA) : simulation of error cycling

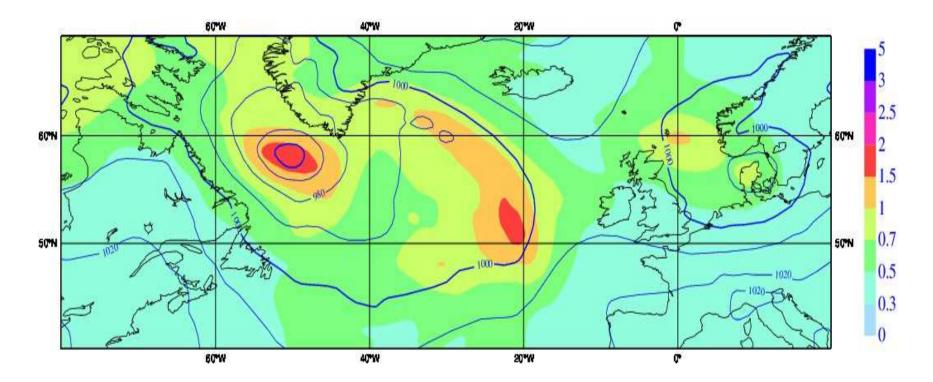


Global operational EDA at Météo-France

- 25 members, T479 (40 km) L105, Arpege 4D-Var (minim T149), 6h cycle.
- 4D-Var analysis perturbations :
 observation perturbations (drawn from R, incl. spatial corr. for AMVs),
 background perturbations (evolved analysis pertbs and model pertbs).
- Multiplicative inflation of forecast perturbations, using innovation-based diagnostics.
- Spatially filtered variances for observation QC and minimisation, wavelet-filtered 3D correlations.

An EDA is also being developed at mesoscale (AROME, oper 2018).

Dynamics of background error variances with EDA

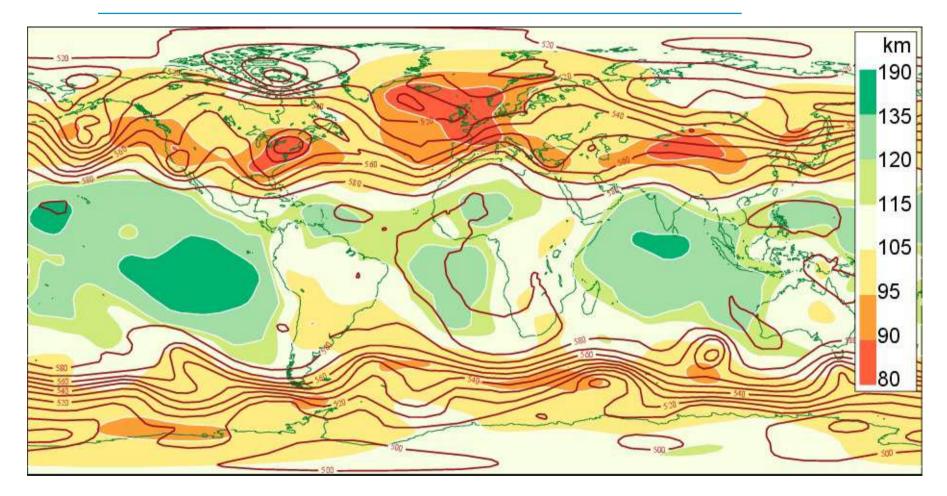


Standard deviations of surface pressure (hPa) (2/2/2010) (superimposed with MSLP analysis, in hPa).

(e.g. Berre et al 2007, Raynaud et al 2012)

METEO FRANCE

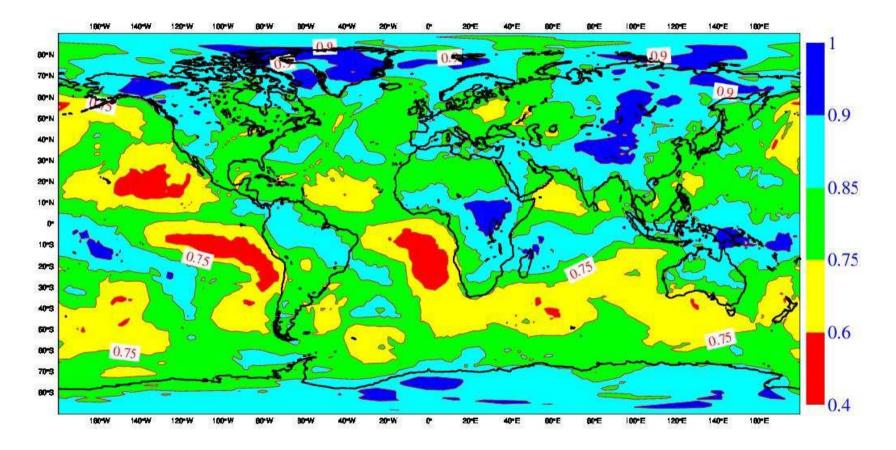
Dynamics of horizontal correlations from ensemble and wavelet filtering



Length scales (km) for wind near 500 hPa (28/2/2010), superimposed with geopotential

(Berre, Varella et Desroziers 2015)

Dynamics of vertical correlations from ensemble and wavelet filtering



Vertical correlations of temperature between 850 & 870 hPa (28/2/2010)

(Berre, Varella and Desroziers 2015)

EDA context at Météo-France

Quasi-linear expansion of forecast errors

Old background errors / Recent observation errors

Observation errors / Model errors

Expansion of forecast error contributions (quasi-linear framework)

At a given step t_0 of the cycling :

 $\boldsymbol{\varepsilon}^{a}_{0} = (\mathbf{I} - \mathbf{K}_{0} \mathbf{H}_{0}) \boldsymbol{\varepsilon}^{b}_{0} + \mathbf{K}_{0} \boldsymbol{\varepsilon}^{o}_{0}$

$$\boldsymbol{\varepsilon}_{0}^{f} = \boldsymbol{\mathsf{M}}_{0} \boldsymbol{\varepsilon}_{0}^{a} + \boldsymbol{\varepsilon}_{0}^{m}$$
$$= \boldsymbol{\mathsf{M}}_{0} (\mathbf{I} - \mathbf{\mathsf{K}}_{0} \mathbf{\mathsf{H}}_{0}) \boldsymbol{\varepsilon}_{0}^{b} + \boldsymbol{\mathsf{M}}_{0} \mathbf{\mathsf{K}}_{0} \boldsymbol{\varepsilon}_{0}^{o} + \boldsymbol{\varepsilon}_{0}^{m}$$

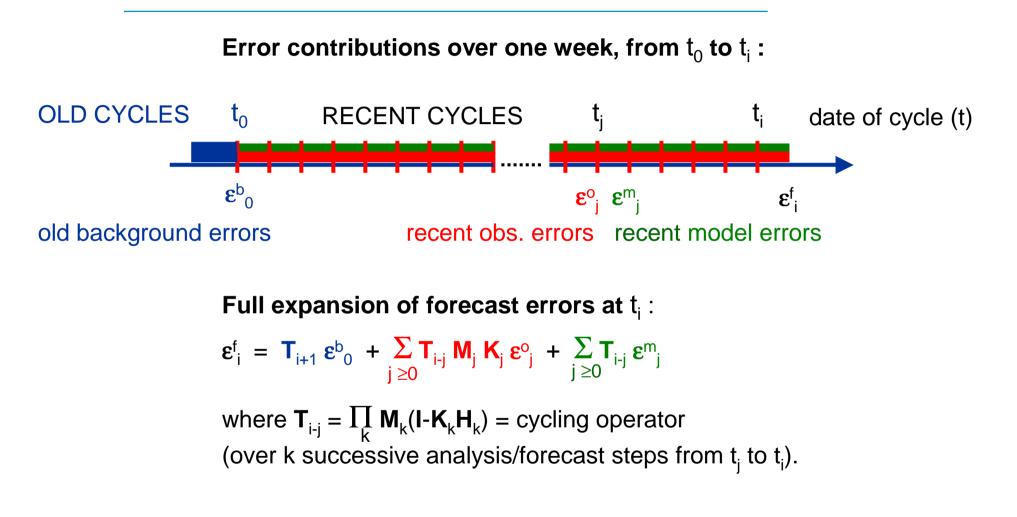
At a later step t_i (e.g. one week later) :

$$\boldsymbol{\epsilon}_{i}^{f} = \boldsymbol{\mathsf{T}}_{i+1} \boldsymbol{\epsilon}_{0}^{b} + \sum_{j \geq 0} \boldsymbol{\mathsf{T}}_{i-j} \boldsymbol{\mathsf{M}}_{j} \boldsymbol{\mathsf{K}}_{j} \boldsymbol{\epsilon}_{j}^{o} + \sum_{j \geq 0} \boldsymbol{\mathsf{T}}_{i-j} \boldsymbol{\epsilon}_{j}^{m}$$

where $\mathbf{T}_{i-j} = \prod_{k} \mathbf{M}_{k} (\mathbf{I}-\mathbf{K}_{k}\mathbf{H}_{k}) = \text{cycling operator}$ (over k successive analysis/forecast steps from t_{j} to t_{j}).

(El Ouaraini and Berre 2011)

Age of error contributions



Several processes in error cycling

Expansion of forecast errors :

$$\boldsymbol{\varepsilon}_{i}^{f} = \mathbf{T}_{i+1} \boldsymbol{\varepsilon}_{0}^{b} + \sum_{j \geq 0} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \boldsymbol{\varepsilon}_{j}^{o} + \sum_{j \geq 0} \mathbf{T}_{i-j} \boldsymbol{\varepsilon}_{j}^{m}$$

where $\mathbf{T}_{i-j} = \prod_{k} \mathbf{M}_{k} (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) = \text{cycling operator.}$

- Old background errors ε^b₀: repeted analysis damping & model propagation.
- Recent observation errors ε^o_i:

filtering (K) & propagation (M); damping & propagation (T); accumulation (Σ).

Recent model errors ε^m_i:

damping & propagation ; accumulation.

Links with EDA and innovations

Same equation for errors and perturbations :

$$\boldsymbol{\varepsilon}_{i}^{f} = \mathbf{T}_{i+1} \boldsymbol{\varepsilon}_{0}^{b} + \sum_{j \geq 0} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \boldsymbol{\varepsilon}_{j}^{o} + \sum_{j \geq 0} \mathbf{T}_{i-j} \boldsymbol{\varepsilon}_{j}^{m}$$

Simulation of error cycling : cycle observation and model perturbations added to deterministic system (e.g. with 4D-Var and non linear forecasts included).

Observation and model perturbations are often (+/- indirectly) derived from innovation-based estimates of covariances.

Amplitudes of some estimated (accumulated) error contributions can be diagnosed and compared using EDA and innovations.

Experimental framework

- Revisit some sensitivity experiments with a previous EDA configuration : no model perturbations (offline tuning of horizontally averaged variances) ; same K in all compared configurations (static spectral correlations, flow-dependent variances).
- Comparison « cold start » / « warmstart » ensembles : diagnosis / evolution of old background perturbations.
- EDA configurations without (recent) model perturbations :
 - ° to diagnose the 2 other contributions
 - (old background errors, recent observation errors).
 - ° to estimate model error variance
 - by comparison with innovation-based estimates of forecast errors.
- Offline diagnosis of global amplitudes (variances) of perturbations.

EDA context at Météo-France

Quasi-linear expansion of forecast errors

Old background errors / Recent observation errors

Observation errors / Model errors

Contribution of recent observation errors

$$\boldsymbol{\epsilon}_{i}^{f} = \mathbf{T}_{i+1} \boldsymbol{\epsilon}_{0}^{b} + \underbrace{\sum_{j \geq 0} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \boldsymbol{\epsilon}_{j}^{o}}_{j} + \sum_{j \geq 0} \mathbf{T}_{i-j} \boldsymbol{\epsilon}_{j}^{m}$$

Contribution of recent observation errors to forecast errors :

 $\varepsilon_{i}^{\text{fo}} = \sum_{j \ge 0} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \varepsilon_{j}^{\text{o}}$

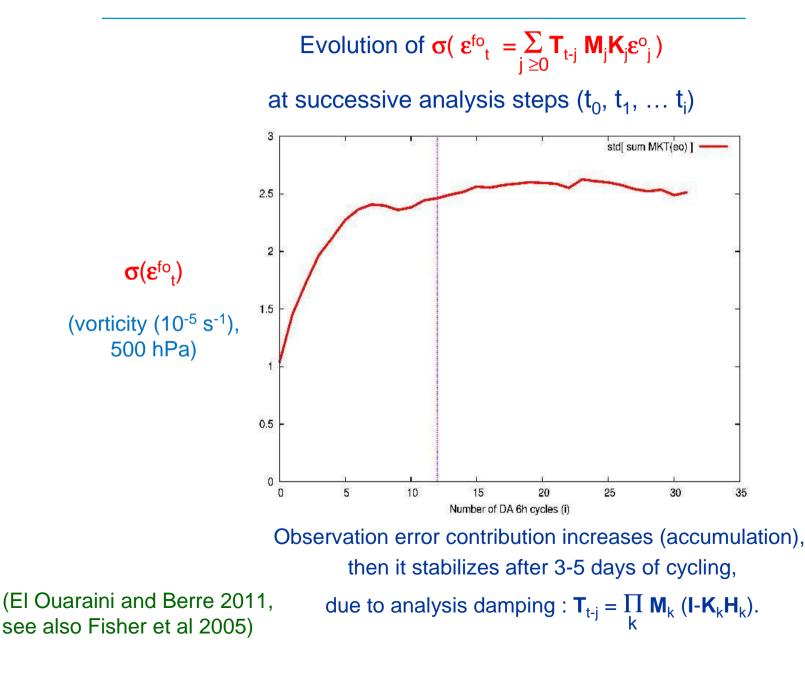
Simulation and evolution using EDA :

* use $\epsilon_0^b = 0$ (cold start = start from unperturbed background),

then cycle with $\mathbf{\epsilon}_{i}^{o}$ ($j \ge 0$) (and with $\mathbf{\epsilon}_{i}^{m} = 0$).

* compute evolution of EDA spread : $\sigma(\epsilon_{t}^{fo} = \sum T_{t-i} M_t K_t \epsilon_t^{o})$.

Accumulation of recent observation errors



¢

METEO FRANCE

Accumulation of recent observation errors

Evolution of $\varepsilon_{t}^{fo} = \sum_{i \ge 0} \mathbf{T}_{t-i} \mathbf{M}_{j} \mathbf{K}_{j} \varepsilon_{j}^{o}$ at successive analysis steps $(t_0, t_1, t_2, \dots, t_i)$: $\mathbf{\epsilon}^{\text{fo}}_{0} = \mathbf{M}_{0}\mathbf{K}_{0}\mathbf{\epsilon}^{0}_{0}$ $\boldsymbol{\varepsilon}^{\text{fo}}_{1} = \mathbf{M}_{1}\mathbf{K}_{1} \boldsymbol{\varepsilon}^{\text{o}}_{1} + \mathbf{T}_{1} \boldsymbol{\varepsilon}^{\text{fo}}_{0}$ $\mathbf{\epsilon}^{\text{fo}}_{2} = \mathbf{M}_{2}\mathbf{K}_{2} \mathbf{\epsilon}^{\text{o}}_{2} + \mathbf{T}_{1} \mathbf{\epsilon}^{\text{fo}}_{1} + \mathbf{T}_{2} \mathbf{\epsilon}^{\text{fo}}_{0}$ $\boldsymbol{\varepsilon}^{\text{fo}}_{t} = \mathbf{M}_{t}\mathbf{K}_{t} \,\boldsymbol{\varepsilon}^{\text{o}}_{t} + \mathbf{T}_{1} \,\boldsymbol{\varepsilon}^{\text{fo}}_{t-1} + \mathbf{T}_{2} \,\boldsymbol{\varepsilon}^{\text{fo}}_{t-2} + \dots + \mathbf{T}_{12} \,\boldsymbol{\varepsilon}^{\text{fo}}_{t-12} + \left(\sum_{k>12} \mathbf{T}_{k} \,\boldsymbol{\varepsilon}^{\text{fo}}_{t-k}\right)$. . .

T is mainly damping, so old obs. error contrib. (with time-lag k>12) become negligible, and $\sigma(\epsilon^{fo})$ stabilizes ~ at step t = 12 (3 days).

Contribution of old background errors

$$\boldsymbol{\epsilon}_{i}^{f} = \left(\boldsymbol{\mathsf{T}}_{i+1} \ \boldsymbol{\epsilon}_{0}^{b}\right) + \sum_{j \ge 0} \boldsymbol{\mathsf{T}}_{i-j} \ \boldsymbol{\mathsf{M}}_{j} \ \boldsymbol{\mathsf{K}}_{j} \ \boldsymbol{\epsilon}_{j}^{o} + \sum_{j \ge 0} \boldsymbol{\mathsf{T}}_{i-j} \ \boldsymbol{\epsilon}_{j}^{m}$$

Contribution of « old » background errors :

$$\boldsymbol{\varepsilon}^{\text{fb}}_{i} = \mathbf{T}_{i+1} \boldsymbol{\varepsilon}^{\text{b}}_{0}$$
 with $\mathbf{T}_{i+1} = \prod_{k=0}^{I} \mathbf{M}_{k} (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k})$

Simulation and evolution using EDA :

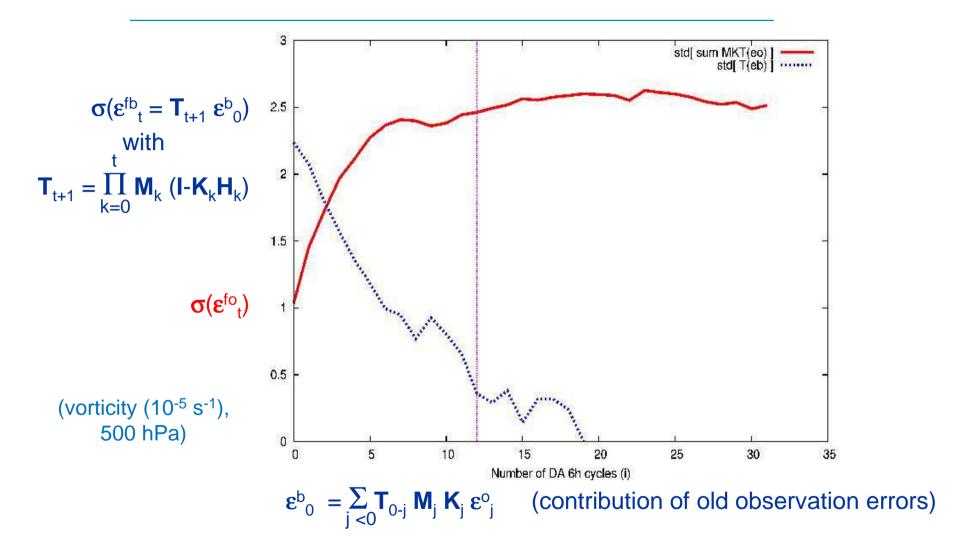
use warm start = ensemble started 6 days before t_0 :

* use $\varepsilon_{0}^{b} = \sum_{j < 0} \mathbf{T}_{0 - j} \mathbf{M}_{j} \mathbf{K}_{j} \varepsilon_{j}^{o}$ (= contribution of old observation errors), then cycle with ε_{i}^{o} ($j \ge 0$) (and with $\varepsilon_{i}^{m} = 0$).

* compute evolution of sqrt of $\sigma^2(\epsilon^{fb}_t) = \sigma^2(\epsilon^{fb}_t + \epsilon^{fo}_t) - \sigma^2(\epsilon^{fo}_t)$

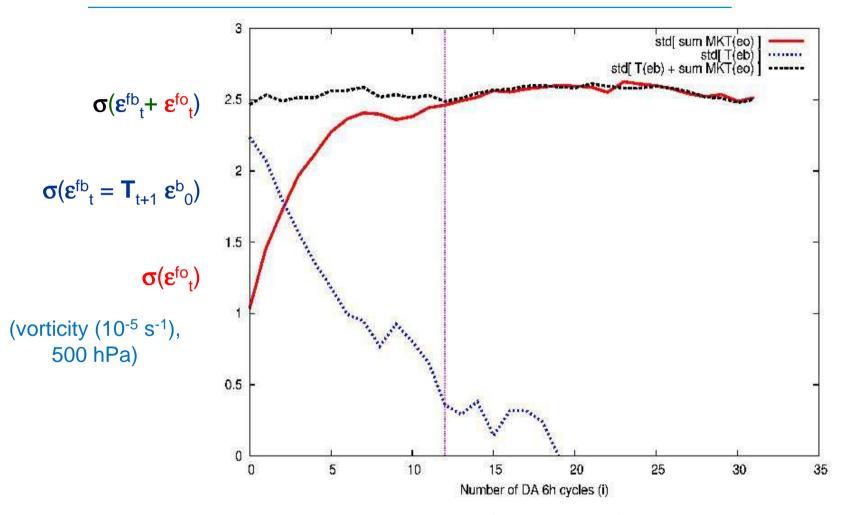
(~sqrt of EDA variance difference between warm start and cold start)

Evolution of old background error contribution



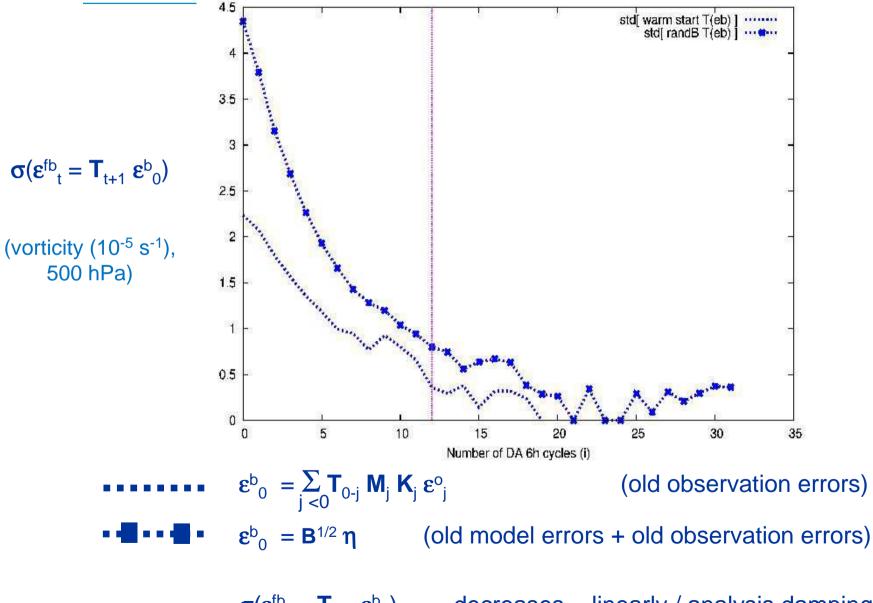
$$\begin{split} &\sigma(\epsilon^{fb}{}_{0}) > \sigma(\epsilon^{fo}{}_{0}) \quad (\text{for vorticity}). \\ &\sigma(\epsilon^{fb}{}_{i} = \textbf{T}_{i+1} \ \epsilon^{b}{}_{0}) \text{ decreases} \sim \text{linearly / analysis damping.} \end{split}$$

Contribution of old+recent observation errors



Total contribution of (old+recent) obs errors is stable : damping of old observation errors is compensated by accumulation of recent obs errors.

Dependence on amplitude of old background errors



 $\sigma(\epsilon^{fb}_{t} = \mathbf{T}_{t+1} \epsilon^{b}_{0})$ decreases ~ linearly / analysis damping.

First conclusions / formalism + experiments

- Quasi-linear expansion of forecast errors / contributions of old background errors, recent observation errors, recent model errors.
- Compare cold/warm start EDA (without recent model perturbations) to diagnose error contrib. of old background and recent observations.
- Old background errors vanish (~linearly) after 3-5 days of cycling.
- Compensated by accumulation of recent observation errors.
- This may help for interpretation/diagnosis of total forecast errors (~ recent observation & model errors).

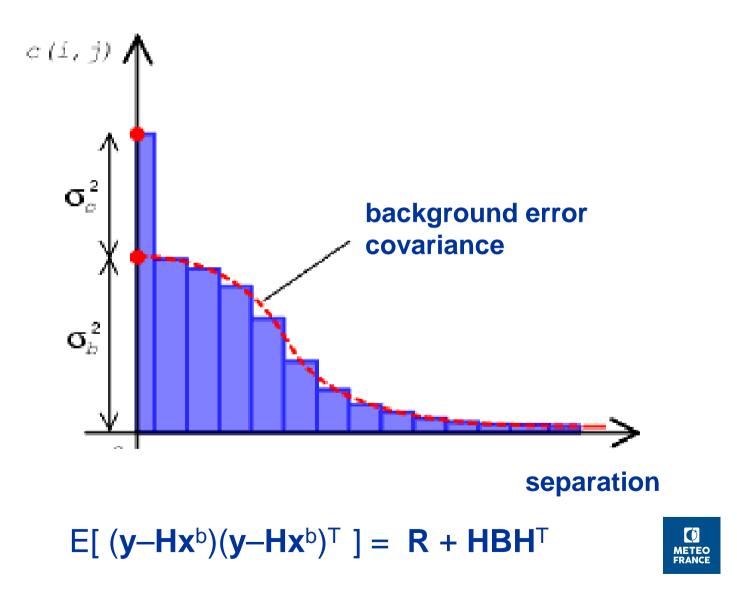
EDA context at Météo-France

Quasi-linear expansion of forecast errors

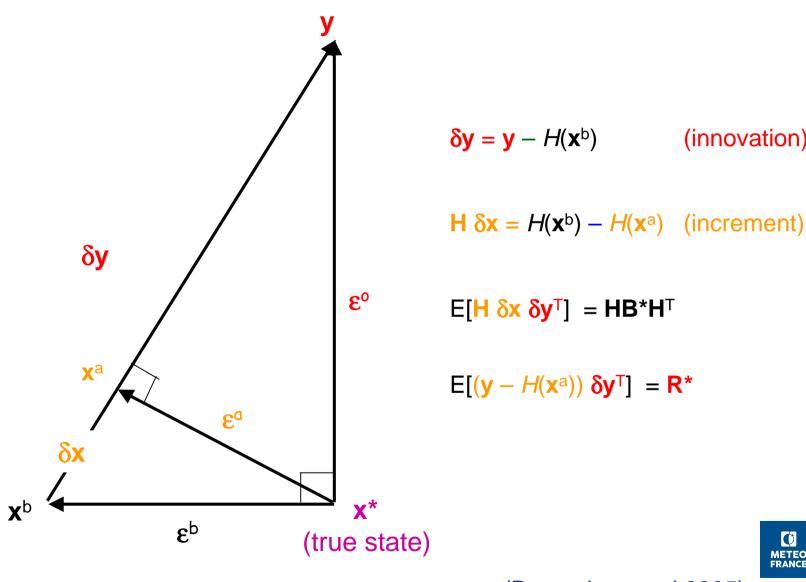
Old background errors / Recent observation errors

Observation errors / Model errors

Innovation covariances



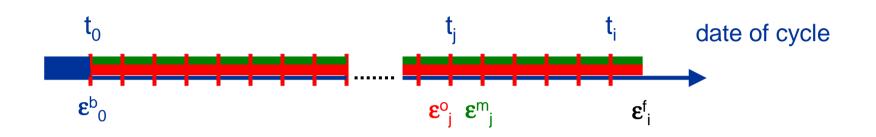
Covariances of analysis residuals



(innovation)

(Desroziers et al 2005)

Estimation of model error contributions (to forecast errors)

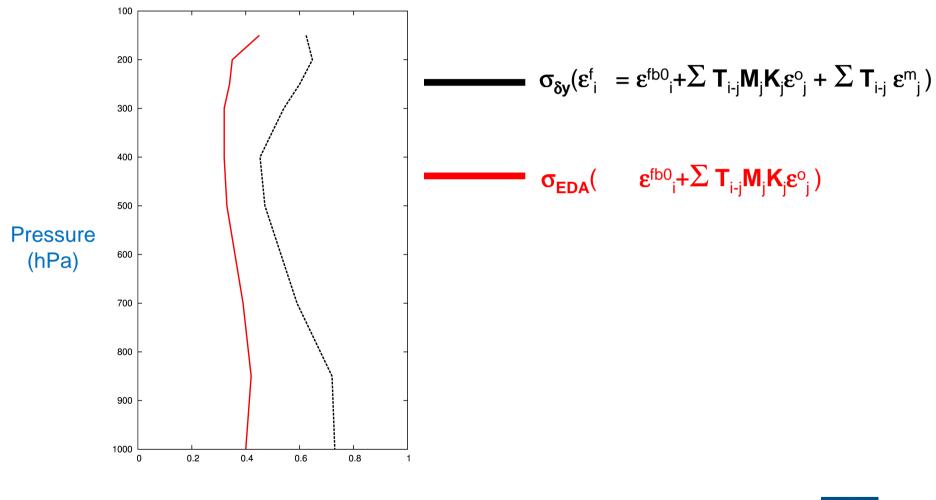


Error $\mathbf{\epsilon}^{f}_{i}$ of forecast issued from cycle t_{i} :

$$\boldsymbol{\epsilon}_{i}^{f} = \mathbf{T}_{i+1} \boldsymbol{\epsilon}_{0}^{b} + \sum_{j \geq 0} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \boldsymbol{\epsilon}_{j}^{o} + \sum_{j \geq 0} \mathbf{T}_{i-j} \boldsymbol{\epsilon}_{j}^{m} \qquad [\mathbf{T}_{i-j} = \prod_{k} \mathbf{M}_{k} (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k})]$$
obs. errors model errors
accumulated from t₀ to t_i

 $\Rightarrow \text{ Compare } \sigma_{\delta y}(\quad \epsilon^{f}_{i} \quad = \epsilon^{fb0}_{i} + \sum \mathsf{T}_{i \cdot j} \mathsf{M}_{j} \mathsf{K}_{j} \epsilon^{o}_{j} + \sum \mathsf{T}_{i \cdot j} \epsilon^{m}_{j}) \qquad (\text{innovation-based}) \\ \text{with } \sigma_{\mathsf{EDA}}(\qquad \epsilon^{fb0}_{i} + \sum \mathsf{T}_{i \cdot j} \mathsf{M}_{j} \mathsf{K}_{j} \epsilon^{o}_{j}) \qquad (\text{using unperturbed model from } t_{0} \text{ to } t_{i}).$

Total forecast error versus observation error contribution



Standard deviation of forecast errors (aircraft observations of temperature (K))

(Raynaud et al 2012)

Total forecast error versus observation error contribution

$$\sigma^{2}_{\delta y}(\epsilon^{fb0}_{i} + \sum \mathbf{T}_{i - j} \mathbf{M}_{j} \mathbf{K}_{j} \epsilon^{o}_{j} + \sum \mathbf{T}_{i - j} \epsilon^{m}_{j}) \sim \sigma^{2}(\sum \mathbf{T}_{i - j} \mathbf{M}_{j} \mathbf{K}_{j} \epsilon^{o}_{j}) + \sigma^{2}(\sum \mathbf{T}_{i - j} \epsilon^{m}_{j})$$

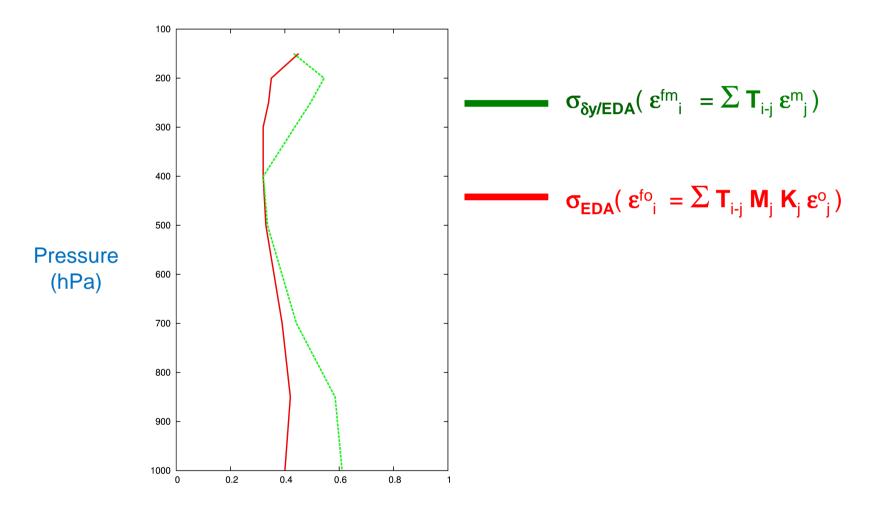
If $cov(\epsilon^{fb0}_{i}, \epsilon^{fm}_{i}) \sim 0$, i.e.

if the one-week period is large enough to neglect time correlations between old background errors & recently accumulated model errors,

in addition to :

$$\sigma^{2}_{\text{EDA}}(\epsilon^{\text{fb0}}_{i} + \sum \mathsf{T}_{i - j} \mathsf{M}_{j} \mathsf{K}_{j} \epsilon^{\circ}_{j}) = \sigma^{2}_{\text{EDA}}(\sum \mathsf{T}_{i - j} \mathsf{M}_{j} \mathsf{K}_{j} \epsilon^{\circ}_{j}) \quad \text{if } \sigma^{2}(\epsilon^{\text{fb0}}_{i}) \sim 0$$

Quantification of model error accumulated during cycling



Standard deviation of error contributions aircraft observations of temperature (K))

Possible guidance for model error representation ?

- Variance of model error accumulated over 3-5 days can be diagnosed : model error contrib. ~ one half of 6h forecast error variance ; obs. error contrib. ~ other half.
- Variance of model error accumulated over 6h: similar formalism, but assumptions/diagnostics on temporal correlations required.
- Importance of innovation-based estimates (R and B).
- Possible model error representations (Q^{1/2}η, SPPT, SKEB, etc) may be compared/adjusted with such diagnostics.

Conclusions

- EDA for estimation of flow-dependent covariances, combined with spatial filtering methods.
- EDA (and innovations) for diagnosing contributions to error cycling :
 - obs. errors contribute ~ within the last 3-5 days of DA cycling.
 - Id background errors vanish ~ after 3-5 days of DA cycling.
 - > model error contrib. are similar in amplitude to obs. error contrib.
- LAM : contribution of LBC errors over 1/3 of ALADIN-France domain due to advection in the cycling (El Ouaraini et al 2015).
- Extension to diagnostics of spatial structures, pursue comparison EDA vs innovations, etc.

Thank you for your attention

