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Using lagged covariances 

in data assimilation

Methodology

Consider Stage 1, a sequential 3DVar-FGAT assimilation of conventional 

data in short windows (5-10 days) which is run over a period of several 

years to produce an initial analysis trajectory 𝐱I (Fig 3). Now consider 

Stage 2 with additional innovations 𝐪𝑖 , from a period towards the end 

of this initial analysis, which we will assimilate through lagged 

covariances to influence earlier windows in a repeat run of the 3DVar-

FGAT. As the new innovations 𝐪𝑖 have already influenced the previous 

window (Fig 3) the background trajectory 𝐱b is different from 𝐱I. 

However a modification of the cost function can account for this, 

allowing consistent influence from 𝐪𝑖 over several windows. 

The new cost function developed to assimilate 𝐪𝑖 has the form:

𝐽c 𝛿𝐱 =
1

2
 𝑖 𝑗 𝐪𝑖 − 𝐙𝑖 𝛿𝐱 + ∆𝐱b

T 𝐒−1 𝑖𝑗 𝐪𝑗 − 𝐙𝑗 𝛿𝐱 + ∆𝐱b

where the indices i and j run over the lags used, 𝐪𝑖 are the innovations 

between the additional data and 𝐱I, 𝐙𝑖 are based on lagged covariances 

(see below), and 𝐒 is the covariance matrix of the innovations. The ∆𝐱b= 

𝐱b − 𝐱I term always references the new increments back to the initial 

trajectory. 

Error estimation

Multiple sources of error contribute to 𝐒, the innovation covariance 

matrix used in Stage 2. Both the observations and the analysis trajectory 

from Stage 1 have associated covariances. These covariances, including 

those between innovations at different lags (𝑖 ≠ 𝑗), could be estimated 

using a method similar to the analysis of innovations described in 

Desroziers et al. (2005). This would occur between Stages 1 and 2. 

An additional contribution to 𝐒 due to the robustness of the linear 

regression can be found by determining the robustness of the lagged 

error covariances that determine 𝐙𝑖 . If the long run is nonstationary, for 

example, it will have limited predictive power and the 𝐽c term will be 

heavily downweighted relative to the other terms in the cost function. 

Error studies for this approach are still underway. 

Figure 4: Truth (black), first assimilation (blue) and second assimilation (orange) against time 
for the simple simulation at one particular value of z. There are ten assimilation windows, 
each of which spans 10 time units. 

Motivation 

The motivation for this work is to assimilate observations of the Atlantic 

Meridional Overturning Circulation (AMOC) that have been made at 

26°N in the Atlantic Ocean (Fig. 1) by modifying ocean densities 

‘upstream’ in the Labrador Sea several years earlier. Many previous 

studies (e.g. Fig. 2) have shown that the AMOC is robustly sensitive to 

anomalies in the Labrador Sea. Using earlier assimilation increments 

should give better continuity to the circulation and the heat transports, 

making the model more useful for coupled forecasting.

This may seem like a classical 4DVar problem that just needs better 

initial conditions. However given the need for high resolution 

(essentially operational) models, 4DVar is impractical over a multi-year 

time window. We aim to use the robustness (state independence) of 

lagged relationships such as that shown in Fig. 2 to make earlier 

increments without the use of an adjoint.

Figure 1: A cartoon of the AMOC and the RAPID 
observational array at 26°N. Adapted from www.rapid.ac.uk.

Figure 2: The 26°N AMOC lag-
regressed onto density anomalies. 
Adapted from Polo et al. (2014).

Simulation study

A simple simulation study is used to test the two-stage assimilation.  

The system has the governing equation 
𝜕𝐱

𝜕𝑡
+ 𝑢

𝜕𝐱

𝜕𝑧
= 0, corresponding to 

the advection of the quantity 𝐱(𝑧, 𝑡) around a ring with spatial 

coordinate 𝑧. For Stage 1 data are generated inside each assimilation 

window and used to produce an initial analysis trajectory, 𝐱I. For Stage 

2, additional data are generated at lags corresponding to multiple 

window lengths in the future. The innovations between these data and 

𝐱I are calculated and, together with values of 𝐙𝑖 determined using a 

long model run, are used to formulate 𝐽c.

Fig. 4 shows the result of applying this procedure to a system with 64 

spatial points and 10 assimilation windows consisting of 1000 time 

steps each. On average, the second assimilation lies closer to the truth 

than the first assimilation, indicating the procedure has been successful.

The lag-covariance matrix 𝐙𝑖 plays the role of the 𝐇𝑖𝐌𝑖 term in classical 

4DVar and can be determined by applying linear regression to e.g. a 

long model run. It should be possible to implement the above cost 

function term within the NEMOVAR ocean assimilation code that is 

operational at the Met Office and ECMWF.

Figure 3: Stage 1 is 3DVar-FGAT 
producing trajectory 𝐱I. Outside 
window (future innovations 𝐪1 and 
𝐪2), are not used. Stage 2 repeats 
Stage 1 but now innovations 𝐪1
and 𝐪2 influence all previous 
window increments 𝛿𝐱 using 
appropriate lagged covariances, 
e.g. at lags ∆𝑡1 and ∆𝑡2. The new 
background trajectory for the 
current window is 𝐱b and the final 
analysis trajectory is 𝐱a =  𝐱b+ 𝛿𝐱.


