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RESULTS (COUPLING=MODEL ERROR)
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* In conventional additive inflation only few effects of model error are considered « Thomas M Hamill and Jeffrey S Whitaker. Accounting for the error due to unresolved scales in ensemble data
By concatenating synthetic' ensemble members more degrees of freedom can be taken into assimilation: A comparison of different approaches. Monthly weather review, 133 (11):3132-3147, 2005.
account « Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability, volumel,1996.

. L . , e Brian R Hunt, Eric | Kostelich, and Istvan Szunyogh. Efficient data assimilation for spatiotemporal
* These synthetic’ ensemble members are resampled onto the real’ members and not forecast chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1):112-126, 2007.

causing no additional computational cost in the propagation step * Elias D Nino-Ruiz and Adrian Sandu. Ensemble Kalman filter implementations based on shrinkage covariance
 Experiments show that a higher rank model error covariance matrix leads to reduced analysis matrix estimation. Ocean Dynamics, pages 1-17, 2015.
RMSE, weaker multiplicative inflation, and higher localization radii



