A Basis for Improving Numerical Weather Prediction by Assimilating Doppler Radar Radial Winds

F. A. Rihan, M. Naim Anwar, H. Al Sakaji

Department of Mathematical Science, College of Science, UAE University, 15551 Al Ain, UAE E-mail: frihan@uaeu.ac.ae & m.anwar@uaeu.ac.ae & 201370110@uaeu.ac.ae

The fifth International Symposium on Data Assimilation (ISDA) 18th-22nd July, 2016, University of Reading, UK

Outline

What is DA?

- Why use Doppler Radar Data?
- Steps of NWP
 - Cost function
 - Objectives and Challenges
 - Getting Doppler radar data
 - Types of errors in Doppler radial winds
- 3D-Var System
 - Assimilating Doppler radial velocity
- Why Are Weather Forecasts Sometimes Wrong?
 - Sensitivity to ICs
 - Biases due to nonlinearity

Summary, Future Directions & Acknowledgment

What is Data Assimilation (DA)?

What set of Initial Conditions (ICs) will seed the models to best predict the known observations? (Inverse problem).

- The goal of DA is to construct the best possible ICs, known as the analysis, from which to integrate the NWP model forward in time.
- DA involves deriving the best current state of the atmosphere by combining a short model forecast (known as background^a) with the latest observations, giving each a weighting which depends upon their error characteristics.

^aBackground is the most recent information.

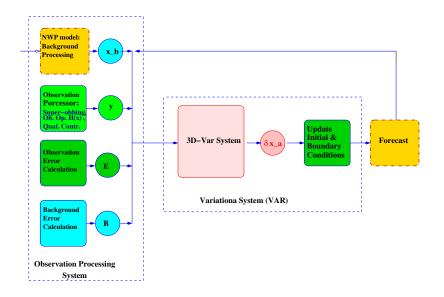
Why use Doppler Radar Data?

Doppler radar can be used in civilian proposes:

• Limited Area Models require observations with high resolution to generate their initial conditions (ICs).

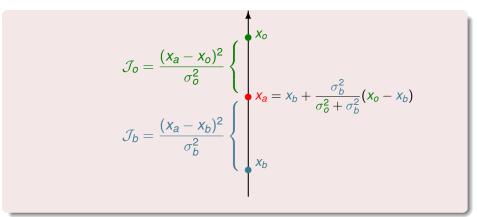
• Doppler radars

- have the ability to scan large volumes of atmosphere,
- provide measurements of radial velocity and reflectivity with high resolution.
- Doppler winds give extra information in forecasting quickly developing mesoscale systems.
- The resolution of radar data are however much higher than the resolution of the NWP models.


Steps of NWP

NWP is an IVP $\frac{\partial \mathbf{x}}{\partial t} = F(\mathbf{x}, t), \quad \mathbf{x}(t_0) = \mathbf{x}_0$ for which we should provide the initial conditions (ICs).

- Collect all possible atmospheric information (background and observations) for a given time;
- This information is analysed (that represented in data assimilation) to obtain a regular, coherent spatial distribution of the atmosphere at that time;
- This analysis becomes the initial conditions for the time integration of the NWP model;
- Finally, given the estimate of the present state of the atmosphere, the model forecasts its evolution.


Steps of NWP

Continued: NWP Process

Cost Function

Total Cost = **Departure from backg**. + **Departure from obs**. $\mathcal{J}[x_a] = \mathcal{J}_b[x_a] + \mathcal{J}_o[x_a]$

Continued: Cost Function

$$\mathcal{J}[\mathbf{x}] = \frac{1}{2} (\mathbf{x}_b - \mathbf{x})^T \mathbf{B}^{-1} (\mathbf{x}_b - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathcal{H}[\mathbf{x}])^T \mathbf{E}^{-1} (\mathbf{y} - \mathcal{H}[\mathbf{x}]).$$

x denotes the analysis, x_b background, y observation vector. B and E are back. and obs. error covariance matrices.

 ${\cal H}$ is the observation operator that relates the model variables to the observation variable and a transformation between the different grid meshes.

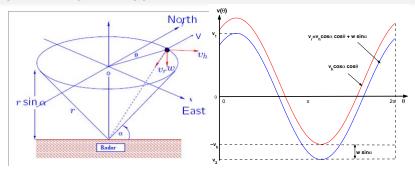
 \mathcal{H} can be linearized as $\mathcal{H}[\mathbf{x} + \delta \mathbf{x}] = \mathcal{H}[\mathbf{x}] + \mathbf{H} \delta \mathbf{x}$. Then

$$\mathcal{J}[\delta \mathbf{x}] = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} [\mathbf{H} \delta \mathbf{x} - \mathbf{y} + \mathcal{H} \mathbf{x}_b]^T \mathbf{E}^{-1} [\mathbf{H} \delta \mathbf{x} - \mathbf{y} + \mathcal{H} \mathbf{x}_b],$$

where H is linear operator $\equiv \partial \mathcal{H} / \partial x$.

Objectives and Challenges

The aim is to develop an incremental assimilation of Doppler radar winds using 3D-Var/4D-Var, leading to an improved representation of the Initial Conditions (ICs) for storm-scale forecasting of winds, sand or dust in UAE!!.

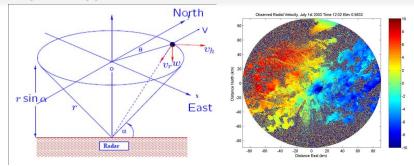

Main Challenges:

- Data assimilation at high resolution; loss of vertical resolution of the radar data.
- The observed quantities are not model variables.

Organization:

- Obtain data for radial winds for which the model output is available,
- The very high resolution raw data is re-mapped to model resolution, and make it suitable for input to the Var system,
- Formulate an observation operator,
- Assimilate the processed data, and investigate the impacts on the analysis and model forecasts.

Pre-processing the Doppler radar data

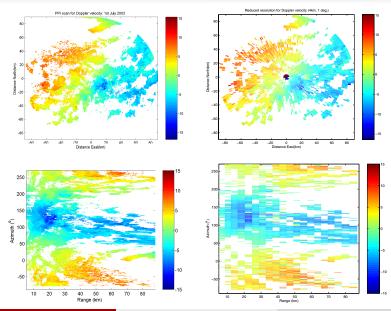


- Bilinear interpolation of u, v & w to the obs locations.
- Projection of the horizontal model wind towards the radar beam $v_h = u \sin \theta + v \cos \theta$, where θ is the azimuth angle.
- The radial wind v_r is v_h + the vertical velocity term, in direction of the radar beam,

 $\mathbf{v}_{r} = \mathbf{u}\cos\alpha\sin\theta + \mathbf{v}\cos\alpha\cos\theta + \mathbf{w}\sin\alpha.$

 α is the elevation.

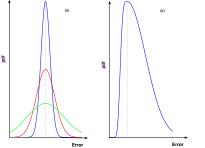
Getting the Doppler radar data


- Bilinear interpolation of u, v & w to the obs locations.
- Projection of the horizontal model wind towards the radar beam $v_h = u \sin \theta + v \cos \theta$, where θ is the azimuth angle.
- The radial wind v_r is v_h + the vertical velocity term, in direction of the radar beam,

 $\mathbf{v}_{\mathbf{r}} = \mathbf{u}\cos\alpha\sin\theta + \mathbf{v}\cos\alpha\cos\theta + \mathbf{w}\sin\alpha.$

α is the elevation.

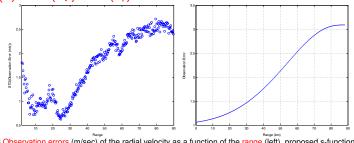
Rihan (UAEU)


Pre-processing data - Super-obing

Rihan (UAEU)

Types of Errors in Doppler Radial winds

- Errors in the original measurements with each pulse volume that depends on the velocity gradients within the pules volume (vary with range);
- Errors due to super-obbing procedure (vary with range);
- Errors due to hardware degradation (random);
- Errors in the assimilation process and observation operator.


Distribution of wind speed error due to (a) instrumental noise, (b) strong velocity gradient across the pulse volume.

Continued: Types of Errors in Doppler Radial winds

- The obs errors are uncorrelated in space and time.
- The error in radial winds due to the velocity gradient along the pulse volume, varies with the range R, is

$$\breve{\sigma}^2(\varepsilon_{\mathbf{v}}) = \left(1 - \mathbf{e}^{-|\Delta \mathbf{v}_r/\mathbf{v}_r|}\right) \sigma^2(\mathbf{v}_r).$$

- The instrumental error $\hat{\sigma}^2(\varepsilon_i)$ does not vary temporally.
- The total error variance of the radial winds is $\sigma^2(\varepsilon) = \breve{\sigma}^2(\varepsilon_v) + \hat{\sigma}^2(\varepsilon_i).$

Local Observation errors (m/sec) of the radial velocity as a function of the range (left), proposed s-function (right).

3D-Var

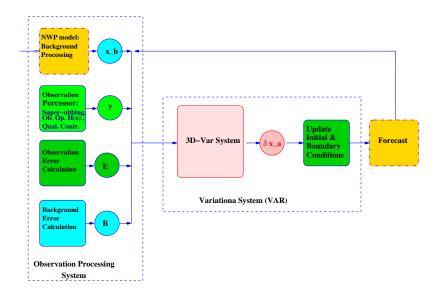
3D-Var System

• The Met Office 3D-Var system uses the incremental cost function,

$$\mathcal{J}[\delta \mathbf{x}] = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} [\mathbf{H} \delta \mathbf{x} - \mathbf{y} + \mathcal{H} \mathbf{x}_b]^T \mathbf{E}^{-1} [\mathbf{H} \delta \mathbf{x} - \mathbf{y} + \mathcal{H} \mathbf{x}_b],$$

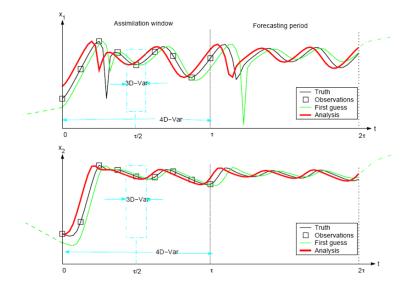
H is linear operator $\equiv \partial \mathcal{H} / \partial \mathbf{x}$.

• To avoid inversion of **B**, we use $(\mathcal{X} = \mathbf{U}\delta\mathbf{x})$

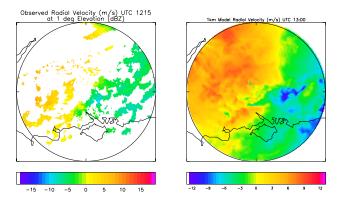

 $\mathcal{J}[\mathcal{X}] = \frac{1}{2}\mathcal{X}^{\mathsf{T}}\mathcal{X} + \frac{1}{2}[\mathbf{H}\mathbf{U}^{-1}\mathcal{X} - \mathbf{y} + \mathcal{H}\mathbf{x}_{b}]^{\mathsf{T}}\mathbf{E}^{-1}[\mathbf{H}\mathbf{U}^{-1}\mathcal{X} - \mathbf{y} + \mathcal{H}\mathbf{x}_{b}].$

U transforms the forecast error in the physical model space into a space where the covariance is identity matrix.

• E is a diagonal matrix, includes: observation errors + error from super-obbing + errors from the observation operator.


3D-Var

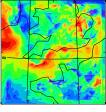
Continued: 3D-Var system


3D-Var

Continued: 3D-Var system

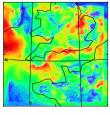
Case Study: Assimilating Doppler Radial Velocity

Observed radial winds for the case study in UK have been assimilated using 3D-Var system in the Met Office. We insert total errors varying with range from 2m/s to 6m/s.

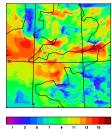


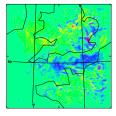
Observed radial velocity compared with assimilated radial velocity, when running 3D-Var system at 4km resolution.

Assimilating radial velocity

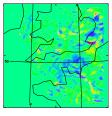

UM Forecasts 10th July 2004 Case

10/07/04 UN Fcost T+3 Speed Lev5 SASS


10/07/04 ull Feat 1+4 Speed Lend S485


10/07/04 UM Fcost T+3 Speed Lev5 SASS+Roditind

10/07/04 UM Fcost T+6 Speed Lev5 SASS+RodWind

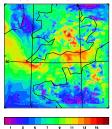


Difference

Difference

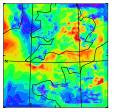
-5 -3.5 -2 -0.5 1 2.5 4 5.5 7

Wind speeds at T + 3 (top) & T + 6 (bottom), level 5 from 12UTC. From left to right: radial wind, and the difference.

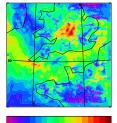

Rihan (UAEU)

2 4 6 8 10 12 14

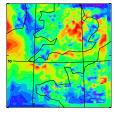
Assimilating radial velocity


Continued: UM Forecasts

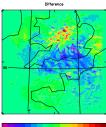
10/07/04 UN Fcast T+1 Speed Lev5 SASS



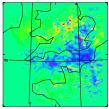
10/07/04 UM Fcast T+2 Speed Lev5 SASS



10/07/04 UM Fcast T+1 Speed Lev5 SASS+RadWind



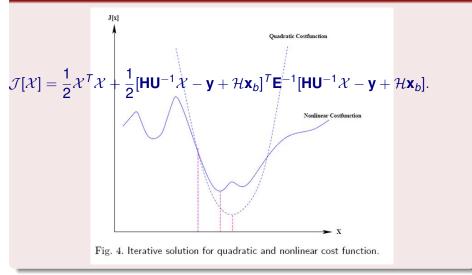
3 5 13 15



Difference

Sensitivity to ICs

Why Are Weather Forecasts Sometimes Wrong?


There are two main reasons: (i) Sensitivity & (ii) Nonlinearity.

(i) Sensitivity to the ICs (b) (c) (c)

Rihan (UAEU)

Continued

(ii) Biases due to nonlinearity

Rihan (UAEU)

Summary & Future Directions

Steps & Requirements:

- Observation processing and data collections;
- Variation systems and analysis;
- Forecast.

Future Directions:

- Assimilate radial velocity, using 4D-Var technique to produce ICs for 1-4km resolution forecasts.
- Applications to sand and dust storm in Abu Dhabi Area.

Acknowledgment:

The support of the UAE University to execute this work through an NRF grant is highly acknowledged and appreciated.

Summary

References:

- F.A. Rihan, M. Anwar, C. Collier, A Basis for Improving Numerical Forecasting in the Gulf Area by Assimilating Doppler Radar Radial Winds, Int. J. Geosc., (2010), 70–78.
- F.A. Rihan, C.G. Collier, S.P. Ballard, Assimilation of Doppler radial winds into a 3D-Var system, Q.J.R. Meteorol. Soc., 134(636) (2008) 1701–1716.
- F.A. Rihan, C.G. Collier & I. Roulstone, Four-dimensional variational data assimilation for Doppler radar wind data, J. Comput. Appl. Math., **176**(1) (2005) 15–34.
- F.A. Rihan, C.G. Collier, S.P. Ballard, Impact of assimilation of Doppler radial velocity on a variational system and on its forecasts, *AMS*, October (2005) 24-29.
- F.A. Rihan, C.G. Collier, S.P. Ballard, & S.J. Swarbrick, On the assimilation of Doppler radial winds into a high resolution NWP model, ERAD(2004) 487–493.