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1 adJULES in brief

The Joint UK Land Environment Simulator (JULES) land-surface model is a mathematical represen-
tation of the flows of energy, carbon and water between soil, vegetation and atmosphere. JULES
groups vegetation into 5 plant functional types (PFTs). adJULES improves the output of this model
through parameter optimisation.

• JULES generates modelled time-series for a given parameter set z at a chosen FLUXNET measure-
ment site.

• The cost is a measure of the mean squared difference between modelled and observed time-series,
and includes a background term with tuning parameter λ.
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• The adjoint helps to search efficiently for better parameters.
• adJULES returns an optimised time-series and best set of parameters with their uncertainties.
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1 Multisite version takes data from multiple FLUXNET sites to find a common set
of optimal parameters.

Aim: Find a set of parameters for each PFT that significantly improves the
model-observation fit

Experiment: One year runs at different sites are optimised against monthly averaged latent heat (LE)
and gross primary production (GPP), by allowing a subset of 8 parameters in the adJULES set to vary.
All sites in a given PFT are optimised simultaneously to find a generic set of parameters appropriate
to the PFT.

2 Assessing the new parameter set found by optimising over the JULES Broadleaf PFT

Focusing on the DK-Sor site in particular, we consider the total error between the modelled and observed time-series for JULES runs using different z: default set (•), locally optimised set (•), PFT optimised
set (•). Taylor diagrams are used to decompose misfit in terms of correlation and standard deviation. Time-series of the data streams are displayed for both the calibration and validation years.
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Taylor diagram for GPP improvements at BT sites
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• 100% of sites improve when optimised individually.
• 92% of the sites improve when optimised by PFT.
• 40% of the sites perform as well for the PFT-grouping set as they do when individually optimised.
• The GPP flux improves the most.
• The LE flux improves to a lesser extent. Since the parameters varied in this experiment were mainly photosyn-

thetic, different parameters may need to be incorporated for this flux to improve.

• adJULES allows for multiple data streams and multiple sites to be assimilated.
• adJULES essentially produces the best possible fit to observations, given the existing model physics and the

prescribed driving data. For sites where the fit is still inadequate, the problems will lie with the model and
data, rather than parameter values.
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3 Representing parameter uncertainty

The second derivative of the cost
function (Hessian) is used to
generate a truncated multivariate
normal distribution in parameter
space.

Gibbs sampling is used to generate
an ensemble of plausible parame-
ter vectors from this distribution.
This gives each optimised param-
eter an associated uncertainty.

• : original value
• : new value
• : cloud of plausible points
^ : contours of constant cost

The optimised Shrub parameter set
is shown on the right. Figure
shows two-dimensional slices in a
multi-dimensional space.
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4 Cluster Analysis

k-means clustering was performed on the single-site parameter sets. The clusters were then com-
pared to another methods of partitioning the sites: PFT definitions and types of climate.
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Future of adJULES: adJULES presents an opportunity to confront the JULES model with
many different observations, and make real improvements to model parameterisation. Future work
includes improvements to the cost function and consideration of errors; multisite optimisations of
different site groupings; the use of satellite products as observables for calibration; development of
the code to allow the direct assimilation of satellite radiance data.
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A version of ADJULES can be downloaded from: http://www.adjules.ex.ac.uk
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