X

= Data assimilation with filtering methods that use Kullback-Leibler distance

Sam Pimentel' and Youssef Qranfal?

NSERC
CRSNG

WENTWORTH

INSTITUTE OF TECHNOLOGY

TRINITY

WESTERN
UNIVERSITY

'Department of Mathematics, Trinity Western University, B.C., Canada (sam.pimentel@twu.ca)

‘Department of Applied Mathematics, Wentworth Institute of Technology, Boston, MA, USA.

Abstract

In this paper we will present two filtering algorithms that
minimize a cost function of weighted Kullback-Leibler (cross
entropy) distance rather than the standard Euclidean dis-
tance. Because Kullback-Leibler distance is non-symmetric
two filtering methods emerge, the EM (expectation maxi-
mization) filter and the SMART filter (simultaneous multi-
plicative algebraic reconstruction technique). These filters
were originally developed to solve an ill-posed inverse prob-
lem that arises in reconstructing a time-varying medical im-
age. The algorithms hold potential for data assimilation ap-
plications in geophysical fluid problems where we are also
interested in time-varying variables of large-scale systems.
These new methods have advantages over traditional meth-

SMART

The simultaneous multiplicative algebraic reconstruction
technique (SMART) ([1], [2]) determines the solution to the
following problem: for x > 0 and 0 < o < 1 minimize

J(x) = aKL(Tz,d) + (1 — a)KL(z, q)

subject to T'x = d and where ¢ is a priori estimate of x.

The solution, equivalent to maximizing Shannon entropy, is

found iteratively as follows:
i e

(41 1 4 2 d; h
+1 __ —Q ¢
L = (QJ) L H ((Tﬂjg))

1=1

EM

The expectation maximization (EM) algorithm ([1], [3])
determines the solution to the problem: for x > 0 and
0 < a <1 minimize

J(x) = aKL(d, Tz) + (1 — a)KL(q, x)

subject to T’z = d and where ¢ is a priori estimate of .

The solution, equivalent to maximizing Burg entropy, is
found iteratively as follows:
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Kullback-Leibler Distance

The Kullback-Leibler or cross-entropy distance [4] between
two non-negative vectors a = (ai,---,ay)’ and b =
(b1,--- ,bn)! is given by
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Note, that the Kullback-Leibler distance is not symmetric,

hence in general KL(a, b) # KL(b, a).

Filtering

The cost functions can be reformulated to solve the data
assimilation problem, for example:
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An approximation sometimes used is to fix the error covari-
ance matrix, i.e. let P. = P, Vk.

These are mean values over 10 realizations.
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® EM and SMART Filters can easily employ a positive
constraint



