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Abstract

In this paper we will present two filtering algorithms that
minimize a cost function of weighted Kullback-Leibler (cross
entropy) distance rather than the standard Euclidean dis-
tance. Because Kullback-Leibler distance is non-symmetric
two filtering methods emerge, the EM (expectation maxi-
mization) filter and the SMART filter (simultaneous multi-
plicative algebraic reconstruction technique). These filters
were originally developed to solve an ill-posed inverse prob-
lem that arises in reconstructing a time-varying medical im-
age. The algorithms hold potential for data assimilation ap-
plications in geophysical fluid problems where we are also
interested in time-varying variables of large-scale systems.
These new methods have advantages over traditional meth-
ods, such as the Kalman filter, in that they do not involve
matrix-matrix multiplication or matrix inversion and thus are
computationally more efficient. We introduce the EM and
SMART filter as a solution to the data assimilation problem
and implement these methods on a few simple data assim-
ilation applications. Results are compared with those from
more standard approaches. We will highlight the advantages
and disadvantages of the EM and SMART filters and demon-
strate the potential benefits of the algorithms for geophysical
data assimilation applications.

Data Assimilation

Best Linear Unbiased Estimator (BLUE)
Given partial observations y = Hxt + µ of a true state,
xt, where E(µ) = 0 and E(µTµ) = R, and a background
estimate of the state xb, where E(x− xb) = 0 and E((x−
xb)T (x − xb)) = B then the BLUE is found by minimizing
the cost function

J(x) = ||x− xf ||2B−1 + ||Hxf − y||2R−1

which has solution:
xa = xb +BHT (HBHT +R)−1(y −Hxb)

Kalman Filter
The Kalman Filter evolves the BLUE analysis sequentially
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An approximation sometimes used is to fix the error covari-
ance matrix, i.e. let Pk = P0,∀k.

SMART

The simultaneous multiplicative algebraic reconstruction
technique (SMART) ([1], [2]) determines the solution to the
following problem: for x > 0 and 0 ≤ α ≤ 1 minimize

J(x) = αKL(Tx, d) + (1− α)KL(x, q)
subject to Tx = d and where q is a priori estimate of x.

The solution, equivalent to maximizing Shannon entropy, is
found iteratively as follows:

x`+1
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x`j M∏
i=1

(
di

(Tx`)i

)Tijα

EM

The expectation maximization (EM) algorithm ([1], [3])
determines the solution to the problem: for x > 0 and
0 ≤ α ≤ 1 minimize

J(x) = αKL(d, Tx) + (1− α)KL(q, x)
subject to Tx = d and where q is a priori estimate of x.

The solution, equivalent to maximizing Burg entropy, is
found iteratively as follows:

x`+1
j = αx`j

M∑
i=1

Tijdi
(Tx`)i

+ (1− α)qj

Results
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Experiment 1: σ2
m = 5, σ2
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b = 0.
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A pseudo-random wave (red) linearly advected (1 m s−1) from left to
right. 20 noisy observations (black circles) at randomly selected

locations are assimilated every 6 timesteps. In experiment 2 the initial
condition is offset from the truth by adding a normally distributed error

with mean 0, variance 1, and decorrelation length of 20 (blue).
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Experiment 2: σ2
m = 0.01, σ2

o = 5, and σ2
b = 5

Exp. Filter Error Propagation Time (s) Error
1 KF Pk = Mk−1,kPk−1M

T
k−1,k +Qk 8.54 498

1 SF (σ2
m)k = (σ2

m)k−1||Mk−1,k||22 + (σ2
m)k 0.35 489

1 EM (σ2
m)k = (σ2

m)k−1||Mk−1,k||22 + (σ2
m)k 0.30 494

1 KF Pk = ||Mk−1,k||22Pk−1 +Qk 3.57 504
1 KF Pk = Qk 3.36 558
1 SF (σm)k = (σm)0 + σb 0.35 552
1 EM (σm)k = (σm)0 + σb 0.33 549
2 KF Pk = Mk−1,kPk−1M

T
k−1,k +Qk 8.70 34

2 SF (σ2
m)k = (σ2

m)k−1||Mk−1,k||22 + (σ2
m)k 0.34 39

2 EM (σ2
m)k = (σ2

m)k−1||Mk−1,k||22 + (σ2
m)k 0.30 40

2 KF Pk = ||Mk−1,k||22Pk−1 +Qk 3.49 36
2 KF Pk = Qk 3.35 66
2 KF Pk = diag(B) 3.21 37
2 SF (σm)k = (σm)0 + σb 0.32 38
2 EM (σm)k = (σm)0 + σb 0.32 38

These are mean values over 10 realizations.

References: [1] Bryne, 1993, [2] Qranfal & Bryne, 2011b, [3] Qranfal & Bryne, 2011a, [4] Kullback & Leibler, 1951

Kullback-Leibler Distance

The Kullback-Leibler or cross-entropy distance [4] between
two non-negative vectors a = (a1, · · · , aN)T and b =
(b1, · · · , bN)T is given by

KL(a, b) =
N∑
i=1
ai log ai

bi
+ bi − ai

Note, that the Kullback-Leibler distance is not symmetric,
hence in general KL(a, b) 6= KL(b, a).

Filtering

The cost functions can be reformulated to solve the data
assimilation problem, for example:

J(x) = KLR−1(Hx, y) + KLP−1(x, xf)
= KL(U1Hx,U1y) + KL(U2x, U2x

f)
= σm − 1

σm
KL(Hx, y) + 1

σm
KL(x, xf)

This can be solved sequentially as a filtering algorithm by
evolving the model state and updating the weights α.

Experiments

We perform ‘twin experiments’ whereby noisy pseudo-
observations, yk = Hkx

t
k + µk are taken from the truth

xtk+1 = Mk,k+1x
t
k + εk. Such that

E(µ) = 0 E(µTµ) = R = σ2
o

E(εk) = 0 E(εTk εk) = Pk = (σm)2
k

R−1 = UT
1 U1 P−1 = UT

2 U2

• The physical model Mk,k+1 is the one-dimensional
linear advection equation, solved on 400 gridpoints
over 600 timesteps

• White noise for model error with different variance at
each timestep

• White noise for observations, observation locations are
randomly sampled, 20 observations every 6 timesteps

Experiment 1: Perfect initial condition
Experiment 2: Non-white initial condition error

Conclusions

1 EM and SMART Filters are computationally faster
than the Kalman Filter, with EM being fastest

2 EM and SMART Filters have similar accuracy to the
Kalman Filter

3 EM and SMART Filters can easily employ a positive
constraint


