Data assimilation with filtering methods that use Kullback-Leibler distance
Sam Pimentel ${ }^{1}$ and Youssef Qranfal ${ }^{2}$
${ }^{1}$ Department of Mathematics, Trinity Western University, B.C., Canada (sam.pimentel@twu.ca)
${ }^{2}$ Department of Applied Mathematics, Wentworth Institute of Technology, Boston, MA, USA.

SMART
The simultaneous multiplicative algebraic reconstruction technique (SMART) ([1], [2]) determines the solution to the following problem: for $x>0$ and $0 \leq \alpha \leq 1$ minimize

$$
J(x)=\alpha \operatorname{KL}(T x, d)+(1-\alpha) \operatorname{KL}(x, q)
$$

subject to $T x=d$ and where q is a priori estimate of x.

The solution, equivalent to maximizing Shannon entropy, is found iteratively as follows:

$$
x_{j}^{\ell+1}=\left(q_{j}\right)^{1-\alpha}\left[x_{j}^{\ell} \prod_{i=1}^{M}\left(\frac{d_{i}}{\left(T x^{\ell}\right)_{i}}\right)^{T_{i j}}\right]^{\alpha}
$$

The expectation maximization (EM) algorithm ([1], [3]) determines the solution to the problem: for $x>0$ and $0 \leq \alpha \leq 1$ minimize

$$
J(x)=\alpha \operatorname{KL}(d, T x)+(1-\alpha) \operatorname{KL}(q, x)
$$

subject to $T x=d$ and where q is a priori estimate of x.

The solution, equivalent to maximizing Burg entropy, is found iteratively as follows:

$$
x_{j}^{\ell+1}=\alpha x_{j}^{\ell} \sum_{i=1}^{M} \frac{T_{i j} d_{i}}{\left(T x^{\ell}\right)_{i}}+(1-\alpha) q_{j}
$$

Results

Experiment 1: $\sigma_{\mathrm{m}}^{2}=5, \sigma_{\mathrm{o}}^{2}=5$, and $\sigma_{\mathrm{b}}^{2}=0$.

A pseudo-random wave (red) linearly advected ($1 \mathrm{~m} \mathrm{~s}^{-1}$) from left to right. 20 noisy observations (black circles) at randomly selected locations are assimilated every 6 timesteps. In experiment 2 the initial condition is offset from the truth by adding a normally distributed error with mean 0 , variance 1 , and decorrelation length of 20 (blue).

Experiment 2: $\sigma_{\mathrm{m}}^{2}=0.01, \sigma_{o}^{2}=5$, and $\sigma_{\mathrm{b}}^{2}=5$

Kullback-Leibler Distance

The Kullback-Leibler or cross-entropy distance [4] between two non-negative vectors $a=\left(a_{1}, \cdots, a_{N}\right)^{T}$ and $b=$ $\left(b_{1}, \cdots, b_{N}\right)^{T}$ is given by

$$
\mathrm{KL}(a, b)=\sum_{i=1}^{N} a_{i} \log \frac{a_{i}}{b_{i}}+b_{i}-a_{i}
$$

Note, that the Kullback-Leibler distance is not symmetric, hence in general $\operatorname{KL}(a, b) \neq \operatorname{KL}(b, a)$.

Filtering

The cost functions can be reformulated to solve the data assimilation problem, for example:

$$
\begin{aligned}
J(x) & =\mathrm{KL}_{R^{-1}}(H x, y)+\mathrm{KL}_{P-1}\left(x, x^{f}\right) \\
& =\mathrm{KL}\left(U_{1} H x, U_{1} y\right)+\mathrm{KL}\left(U_{2} x, U_{2} x^{f}\right) \\
& =\frac{\sigma_{\mathrm{m}}-1}{\sigma_{\mathrm{m}}} \mathrm{KL}(H x, y)+\frac{1}{\sigma_{\mathrm{m}}} \mathrm{KL}\left(x, x^{f}\right)
\end{aligned}
$$

This can be solved sequentially as a filtering algorithm by evolving the model state and updating the weights α.

Experiments

We perform 'twin experiments' whereby noisy pseudoobservations, $y_{k}=H_{k} x_{k}^{t}+\mu_{k}$ are taken from the truth $x_{k+1}^{t}=M_{k, k+1} x_{k}^{t}+\epsilon_{k}$. Such that

$$
\begin{array}{rl}
\mathbb{E}(\mu)=0 & \mathbb{E}\left(\mu^{T} \mu\right)=R=\sigma_{\mathrm{o}}^{2} \\
\mathbb{E}\left(\epsilon_{k}\right)=0 & \mathbb{E}\left(\epsilon_{k}^{T} \epsilon_{k}\right)=P_{k}=\left(\sigma_{\mathrm{m}}\right)_{k}^{2}
\end{array}
$$

$$
R^{-1}=U_{1}^{T} U_{1} \quad P^{-1}=U_{2}^{T} U_{2}
$$

The physical model $M_{k, k+1}$ is the one-dimensional linear advection equation, solved on 400 gridpoints over 600 timesteps

- White noise for model error with different variance at each timestep
White noise for observations, observation locations are randomly sampled, 20 observations every 6 timesteps
Experiment 1: Perfect initial condition
Experiment 2: Non-white initial condition error

Conclusions

(1) EM and SMART Filters are computationally faster than the Kalman Filter, with EM being fastest
(2) EM and SMART Filters have similar accuracy to the Kalman Filter
© EM and SMART Filters can easily employ a positive constraint

An approximation sometimes used is to fix the error covariance matrix, i.e. let $P_{k}=P_{0}, \forall k$.

