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Accurately forecasting ocean currents for short-term predictions is of great importance for a number of A e
applications such as tracking marine pollution. Muscarella et al. (2015) has previously shown drifter " The assimilation of solely altimetry (B-SSHG) produces the ~ FEswey .. =
inferred velocity assimilation improves Lagrangian predictability in the Gulf of Mexico and recently closest domain-wide forecast comparisons to OSCAR. "
Carrier et al. (2016) showed qualitatively that assimilating the combination of altimetry and drifters Near-drifter forecast comparisons shows the drifter velocity
improves upon solely altimetry assimilation. This study expands on this work by formally quantifying the assimilation (B-DRIFT) improvements are closer to thatof = . e 'R
relative importance of assimilating altimetry and a limited amount of drifter data (more typical of general solely altimetry assimilation as expected (Figure 4). < o - |
ocean COverage) bOth SeparatEIy and COmbined. Figure 4 (right):. Ocean current speeds (m/s) and velocity vectors averaged over all forecast cycles (5th - 0 - ‘ 0 - O

January-13th March) and over the top 30 meters depth for top left OSCAR analysis, top middle: Control (free
run with no assimilation), top right: TS-SST (B), bottom left: B-DRIFT, bottom middle: B-SSHG and bottom
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D(t) V zate(t) = rons(OF + [yona(t) — yrons ()] Average separation | = The addition of drifter velocities was shown on average to significantly improve the Lagrangian
%% Average Growth Rate of Separation Distance e o o> forecast skill in all four metrics as compared to the baseline assimilation, B (35-40%) and solely
Drincar to- tena) Dlfo-fena)/(to-fens) e et o altimetry assimilation, B-SSHG (18-20%) in line with previous studies (Table 3, Figure 5).
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Ay Difference () — amamonss(t average separation = The assimilation of the combination of altimetry and drifter velocities, B-SSHG-DRIFT may either
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The Regional Ocean Modelling System (ROMS) 1S4D-Var scheme was run sequentially in four day o .SHH, botom left B & " e e o
cycles from 1st January to 13" March 2013. Four experiments were assessed consisting of differing SSHG-DRIFT Eachorey > | onthe skil score than BDRIFT.
observation sets (Table 1). Four day forecasts (Non-Linear ROMS without any assimilation) were eetor for saennads e e ot
produced at the end of each cycle (Figure 2). e on the kil score than B-SSHC-
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After validating the assimilation system (Figure 3) the ocean current forecast skill was assessed using the average over all driters | | averaged over the entire study
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1. Eulerian ocean current skill using OSCAR as gridded observations (domain wide and near- drifter). all drifters and forecasts for ¢
comparison. B 20 - & 20
2. Lagrangian ocean current skill using 4 Lagrangian metrics (Table 2) computed by comparisons of
simulated ROMS floats and the drifter data outside of assimilation cycles.
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Schemati X(f)1 =i (ackground Here, for the first time, we quantify the relative importance of assimilating altimetry and drifter observations
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