

Toward variational data assimilation for coupled models: first experiments on a diffusion problem

Rémi Pellerej, Arthur Vidard and Florian Lemarié remi.pellerej@imag.fr

Inria, Univ. Grenoble-Alpes, CNRS, Laboratoire Jean Kuntzmann, F-38000 Grenoble

Context

- ▶ Ocean-atmosphere coupled models have a key role in weather forecast nowadays
- ► The coupling methods may severely impact the model solution. An exact solution of the coupling problem can be obtained using a **Global-in-Time Schwarz method** (Lemarié et al. [2014])
- ► The initialisation of coupled models also has a major impact on the forecast solution (Mulholland et al. [2015])
- ► Few coupled DA methods started to be developed (Smith et al. [2015], Laloyaux et al. [2015]...) for coupled systems, and showed promising results

Our approach

- ► The dynamical equations of our system are coupled using an iterative Schwarz domain decomposition method (Gander [2008])
- ▶ We are using **variational DA** techniques, which require minimization iterations and we are looking to **take benefit of the minimization iterations** to **converge toward the exact solution** of the coupling problem: the minimisations iterations substitute the Schwarz iterations
- ► Three general variational DA algorithms, are presented here and applied to a simple coupled system (Pellerej et al. [2016])

1. Model problem and coupling strategy

Let us define two models on each space-time domain $\Omega_d \times [0,T]$ (d=1,2), with a common interface $\Gamma=\{z=0\}$.

Problem: How to **strongly couple** the two models at their interface Γ ?

⇒ We propose to use a global-in-time Schwarz algorithm (Gander [2008])

For a given initial condition $u_0 \in H^1(\Omega_1 \cup \Omega_2)$ and *first-guess* $u_1^0(0,t)$, the coupling algorithm reads

$$\begin{cases} \mathcal{L}_2 u_2^k = f_2 & \text{on } \Omega_2 \times T_W \\ u_2^k(z,0) = u_0(z) & z \in \Omega_2 \\ \mathcal{G}_2 u_2^k = \mathcal{G}_1 u_1^{k-1} & \text{on } \Gamma \times T_W \end{cases} \begin{cases} \mathcal{L}_1 u_1^k = f_1 & \text{on } \Omega_1 \times T_W \\ u_1^k(z,0) = u_0(z) & z \in \Omega_1 \\ \mathcal{F}_1 u_1^k = \mathcal{F}_2 u_2^k & \text{on } \Gamma \times T_W \end{cases} \tag{1}$$

 \mathcal{F}_d and \mathcal{G}_d are the interface operators, k is the iteration number, $T_W=[0,T]$, and $f_d\in L^2(0,T;L^2(\Omega_d))$ is a given right-hand side

- ▶ At convergence, this algorithm provides a mathematically strongly coupled solution which satisfies $\mathcal{F}_1u_1 = \mathcal{F}_2u_2$ and $\mathcal{G}_2u_2 = \mathcal{G}_1u_1$ on $\Gamma \times T_W$
- ▶ The convergence speed of the method greatly depends on the choice for \mathcal{F}_d and \mathcal{G}_d operators, and the choice of the *first-guess*

2. Classic data assimilation

Let us introduce the classic cost function for variational data assimilation in the **uncoupled** case, for a domain Ω_d

$$\mathbf{x}_{0,d} = u_{0,d}(z) = u_0(z), \ z \in \Omega_d \ (d = 1, 2) \text{ is the controlled state vector}$$

$$J^b(\mathbf{x}_{0,d}) = \sqrt{\mathbf{x}_{0,d} - \mathbf{x}_d^b, \mathbf{B}^{-1}(\mathbf{x}_{0,d} - \mathbf{x}_d^b)} + \sqrt{\int_0^T \left\langle \mathbf{y} - H(\mathbf{x}_d), \mathbf{R}^{-1}(\mathbf{y} - H(\mathbf{x}_d)) \right\rangle_{\Omega_d}} dt \qquad (2)$$

where $\langle \cdot \rangle_{\Sigma}$ is the usual Euclidian inner product on a spatial domain Σ .

3. Toward a coupled variational data assimilation

If the DA process is done separately on each subdomain, the initial condition $u_0 = (\mathbf{x}_{0,1}^a, \mathbf{x}_{0,2}^a)^T$ obtained on Ω does not satisfy the interface conditions. The interface imbalance in the initial condition can severely damage the forecast skills of coupled models (Mulholland et al. [2015])

Objective: properly take into account the coupling in the assimilation process

Full Iterative Method (FIM)

- $\mathbf{x_0} = u_0(z), \ z \in \Omega$
- We iterate the models till convergence of the Schwarz algorithm (k_{CVg} iterations)
- ▶ The first-guess u_1^0 in (1) is updated after each minimization iteration

$$J_{FIM}(\mathbf{x}_0) = J^b(\mathbf{x}_0) + \int_0^T \left\langle \mathbf{y} - H(\mathbf{x}^{\text{cvg}}), \mathbf{R}^{-1}(\mathbf{y} - H(\mathbf{x}^{\text{cvg}})) \right\rangle_{\Omega} dt$$

where $\mathbf{x}^{ ext{cvg}} = (u_1^{k_{ ext{cvg}}}, u_2^{k_{ ext{cvg}}})^T$

Truncated Iterative Method (TIM)

- $\mathbf{x}_0 = (u_0(z), u_1^0(0, t))^T$
- ▶ The Schwarz iterations are truncated at k_{max} iterations
- ► Extended cost function (misfit in the interface conditions) (Gejadze and Monnier [2007])

$$J_{TIM}(\mathbf{x}_0) = J^b(\mathbf{x}_0) + \int_0^T \left\langle \mathbf{y} - H\left(\mathbf{x}^{\text{trunc}}\right), \mathbf{R}^{-1}(\mathbf{y} - H\left(\mathbf{x}^{\text{trunc}}\right)) \right\rangle_{\Omega} dt + J^s$$
 (4

where $J^s = \alpha_{\mathcal{F}} \|\mathcal{F}_1 u_1(0,t) - \mathcal{F}_2 u_2(0,t)\|_{[0,T]}^2 + \alpha_{\mathcal{G}} \|\mathcal{G}_1 u_1(0,t) - \mathcal{G}_2 u_2(0,t)\|_{[0,T]}^2$ with $\|a\|_{\Sigma}^2 = \langle a,a\rangle_{\Sigma}$ and $\mathbf{x}^{\mathrm{trunc}} = (u_1^{k_{\mathrm{max}}},u_2^{k_{\mathrm{max}}})^T$

Coupled Assimilation Method with Uncoupled models (CAMU)

- $\mathbf{x}_0 = (\mathbf{x}_{0,1}, \mathbf{x}_{0,2})^T$ with $\mathbf{x}_{0,d} = (u_0|_{z \in \Omega_d}, u_d^0(0,t))$
- ▶ We suppress the coupling between both models

The cost function for the CAMU is

$$J_{CAMU}(\mathbf{x}_0) = \left\{ \sum_{d=1}^{2} (J^b(\mathbf{x}_{0,d}) + J^o(\mathbf{x}_{0,d})) \right\} + J^s$$
 (5)

Algo	Control vector	# of coupling iterations	extended cost function	Adjoint of the coupling	Coupling
 FIM	$(u_0(z))$	$k_{ m cvg}$	no	yes	strong
TIM	$(u_0(z), u_1^0)^T$	$k_{ m max}$	yes	yes	\sim strong
CAMU	$(u_0(z),u_1^0,u_2^0)^T$	0	yes	no	weak

able 1: Overview of the properties of the coupled variational DA methods described

The originality of these algorithms is the use of a **Schwarz algorithm** to couple our models jointly to the DA process with an **extended cost function**.

4. Application to a 1D diffusion problem

Previous algorithms are applied on a **1D linear diffusion problem**. We consider:

- $\nu_1 \neq \nu_2$ the diffusion coefficients in each subdomain
- ho $\mathcal{F}_d =
 u_d \partial_z$ and $\mathcal{G}_d = \operatorname{Id}$ the interface operators on Γ (Dirichlet-Neumann)
- $u_d^*(z,t) = \frac{U_0}{4}e^{-\frac{|z|}{\alpha_d}}\left\{3 + \cos^2\left(\frac{3\pi t}{\tau}\right)\right\}$ on $\Omega_d \times T_W$ the analytical solution

Single column observation experiment:

- ▶ Observations are available in $\Omega \setminus \{\Gamma\}$ at the end of the time-window (i.e. at t = T)
- We define the interface imbalance indicator, equal to J^s with $\alpha_G = 0.01$ and $\alpha_F = 40$

5. Single column observation experiment results

Algo	$\alpha_{\mathcal{G}}$	$\alpha_{\mathcal{F}}$	$k_{ ext{max}}$	# of minimisation iterations	# of models runs	Interface imbalance indicator	RMSE in °C
FIM	-	-	$k_{ m cvg}$	58	1169	$3.69 \ 10^{-12}$	0.220
TIM	0	-	$k_{ m cvg}$	48	2016	$5.63 \ 10^{-12}$	0.220
TIM	0	-	5	245	1225	$2.91 \ 10^{-2}$	0.216
TIM	0	-	2	1518	3036	3.77	0.272
TIM	0.01	-	2	425	850	$9.89 \ 10^{-7}$	0.217
TIM	0.01	-	1	344	344	$8.38 \ 10^{-7}$	0.215
CAMU	0.01	40	0	2957	2957	$1.40 \ 10^{-4}$	0.231
CAMU	0.001	4	0	268	268	$9.38 \ 10^{-3}$	0.240
CAMU	0.0001	0.4	0	742	742	$3.29 \ 10^{-1}$	0.327
Uncoupled	0	0	0	101	101	29.0	1.717

Table 2: Results obtained for the three coupled variational DA methods

Figure 1: Evolution of different terms with respect to number of model iterations for few configurations

6. Conclusions and perspectives

In the framework of an iterative coupling, we set up few data assimilation algorithms.

- ► Adding a physical constraint on the interface conditions in the cost function can have a beneficial effect on the performance of the method and allow to save coupling iterations
- ► An approach which only requires the adjoint of each individual model but not the adjoint of the coupling showed promising results
- ▶ The methods are very sensitive to the parameters choices
- ► We only test the algorithms on a simple linear problem

Perspectives

- ullet Algorithm **convergence** and **conditioning** problem when J_S is part of the cost function will be studied
- Since the objective is to apply such methods to ocean-atmosphere coupled models, increasingly complex models including **physical parameterisations** for subgrid scales, and **non-linearities** will be considered

References

- M. J. Gander. Schwarz methods over the course of time. *Electron. Trans. Numer. Anal.*, 31:228–255, 2008. http://etna.math.kent.edu/vol.31.2008/pp228-255.dir.
- I. Y. Gejadze and J. Monnier. On a 2d 'zoom' for the 1d shallow water model: Coupling and data assimilation. *Comput. Methods Appl. Mech. and Engrg.*, 196(45–48):4628 4643, 2007. ISSN 0045-7825. doi: http://dx.doi.org/10.1016/j.cma.2007.05.026.
- P. Laloyaux, M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen. A coupled data assimilation system for climate reanalysis. *Q.J.R. Meteorol. Soc*, pages n/a–n/a, 2015. ISSN 1477-870X. doi: 10.1002/qj.2629. URL http://dx.doi.org/10.1002/qj.2629.
- F. Lemarié, P. Marchesiello, L. Debreu, and E. Blayo. Sensitivity of ocean-atmosphere coupled models to the coupling method: example of tropical cyclone Erica. *INRIA*, Research report RR-8651, 2014. URL https://hal.inria.fr/hal-00872496/PDF/RR-8651.pdf.
- D. P. Mulholland, P. Laloyaux, K. Haines, and M. A. Balmaseda. Origin and impact of initialization shocks in coupled atmosphere-ocean forecasts. *Mon. Wea. Rev.*, 143:4631–4644, 2015. doi: 10.1175/MWR-D-15-0076.1.
- R. Pellerej, A. Vidard, and F. Lemarié. Toward variational data assimilation for coupled models: first experiments on a diffusion problem. *Arima*, CARI 2016(preprint), 2016. URL https://hal.archives-ouvertes.fr/hal-01337743.
- P. Smith, A. Fowler, and A. Lawless. Exploring strategies for coupled 4d-var data assimilation using an idealised atmosphere-ocean model. *Tellus A*, 67(0), 2015. ISSN 1600-0870. URL http://dx.doi.org/10.3402/tellusa.v67.27025.