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Context
I Ocean-atmosphere coupled models have a key role in weather forecast nowadays
I The coupling methods may severely impact the model solution. An exact solution of the

coupling problem can be obtained using a Global-in-Time Schwarz method (Lemarié et al.
[2014])

I The initialisation of coupled models also has a major impact on the forecast solution (Mul-
holland et al. [2015])

I Few coupled DA methods started to be developed (Smith et al. [2015], Laloyaux et al. [2015]...)
for coupled systems, and showed promising results

Our approach
I The dynamical equations of our system are coupled using an iterative Schwarz domain

decomposition method (Gander [2008])
I We are using variational DA techniques, which require minimization iterations and we are

looking to take benefit of the minimization iterations to converge toward the exact
solution of the coupling problem: the minimisations iterations substitute the Schwarz
iterations

I Three general variational DA algorithms, are presented here and applied to a simple
coupled system (Pellerej et al. [2016])

1. Model problem and coupling strategy

Let us define two models on each space-time
domain Ωd × [0, T ] (d = 1, 2), with a common
interface Γ = {z = 0}.

Problem: How to strongly couple the two
models at their interface Γ ?
⇒We propose to use a global-in-time Schwarz
algorithm (Gander [2008])
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Fd and Gd are the interface operators, k is the iteration number, TW = [0, T ], and
fd ∈ L2(0, T ;L2(Ωd)) is a given right-hand side

I At convergence, this algorithm provides a mathematically strongly coupled solution which
satisfies F1u1 = F2u2 and G2u2 = G1u1 on Γ× TW

I The convergence speed of the method greatly depends on the choice for Fd and Gd
operators, and the choice of the first-guess

2. Classic data assimilation

Let us introduce the classic cost function for variational data assimilation in the uncoupled
case, for a domain Ωd
I x0,d = u0,d(z) = u0(z), z ∈ Ωd (d = 1, 2) is the controlled state vector

JUcpl(x0,d) =

Jb(x0,d)︷ ︸︸ ︷〈
x0,d − xbd,B

−1(x0,d − xbd)
〉

Ωd
+

Jo(x0,d)︷ ︸︸ ︷∫ T

0

〈
y −H (xd) ,R

−1(y −H (xd))
〉

Ωd
dt (2)

where 〈·〉Σ is the usual Euclidian inner product on a spatial domain Σ.

3. Toward a coupled variational data assimilation

If the DA process is done separately on each subdomain, the initial condition
u0 = (xa0,1,x

a
0,2)T obtained on Ω does not satisfy the interface conditions. The interface

imbalance in the initial condition can severely damage the forecast skills of coupled models
(Mulholland et al. [2015])

Objective: properly take into account the coupling in the assimilation process

Full Iterative Method (FIM)
I x0 = u0(z), z ∈ Ω

I We iterate the models till convergence of the Schwarz algorithm (kcvg iterations)
I The first-guess u0

1 in (1) is updated after each minimization iteration

JFIM (x0) = Jb(x0) +

∫ T

0

〈
y −H (xcvg) ,R−1(y −H (xcvg))

〉
Ω

dt (3)

where xcvg = (u
kcvg
1 , u

kcvg
2 )T

Truncated Iterative Method (TIM)
I x0 = (u0(z), u0

1(0, t))T

I The Schwarz iterations are truncated at kmax iterations
I Extended cost function (misfit in the interface conditions) (Gejadze and Monnier [2007])

JTIM (x0) = Jb(x0) +

∫ T

0

〈
y −H

(
xtrunc

)
,R−1(y −H

(
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)
)
〉

Ω
dt + Js (4)

where Js = αF‖F1u1(0, t)−F2u2(0, t)‖2
[0,T ]

+ αG‖G1u1(0, t)− G2u2(0, t)‖2
[0,T ]

with

‖a‖2Σ = 〈a, a〉Σ and xtrunc = (ukmax
1 , ukmax

2 )T

Coupled Assimilation Method with Uncoupled models (CAMU)
I x0 = (x0,1,x0,2)T with x0,d = (u0|z∈Ωd

, u0
d(0, t))

I We suppress the coupling between both models
The cost function for the CAMU is

JCAMU (x0) =


2∑
d=1

(Jb(x0,d) + Jo(x0,d))

 + Js (5)

Algo Control vector # of coupling
iterations

extended cost
function

Adjoint of the
coupling

Coupling

FIM (u0(z)) kcvg no yes strong
TIM (u0(z), u0

1)T kmax yes yes ∼strong
CAMU (u0(z), u0

1, u
0
2)T 0 yes no weak

Table 1 : Overview of the properties of the coupled variational DA methods described

The originality of these algorithms is the use of a Schwarz algorithm to couple our models
jointly to the DA process with an extended cost function.

4. Application to a 1D diffusion problem

Previous algorithms are applied on a 1D linear diffusion problem. We consider:
I Ld = ∂t + νd∂

2
z

I ν1 6= ν2 the diffusion coefficients in each subdomain
I Fd = νd∂z and Gd = Id the interface operators on Γ (Dirichlet-Neumann)

I u?d(z, t) = U0
4 e
− |z|αd

{
3 + cos2

(
3πt
τ

)}
on Ωd × TW the analytical solution

Single column observation experiment:
I Observations are available in Ω \ {Γ} at the end of the time-window (i.e. at t = T )
I We define the interface imbalance indicator, equal to Js with αG = 0.01 and αF = 40

5. Single column observation experiment results

Algo αG αF kmax # of minimisation
iterations

# of models
runs

Interface
imbalance
indicator

RMSE in ◦C

FIM - - kcvg 58 1169 3.69 10−12 0.220

TIM 0 - kcvg 48 2016 5.63 10−12 0.220

TIM 0 - 5 245 1225 2.91 10−2 0.216
TIM 0 - 2 1518 3036 3.77 0.272

TIM 0.01 - 2 425 850 9.89 10−7 0.217

TIM 0.01 - 1 344 344 8.38 10−7 0.215
CAMU 0.01 40 0 2957 2957 1.40 10−4 0.231

CAMU 0.001 4 0 268 268 9.38 10−3 0.240
CAMU 0.0001 0.4 0 742 742 3.29 10−1 0.327

Uncoupled 0 0 0 101 101 29.0 1.717

Table 2 : Results obtained for the three coupled variational DA methods

0 50 100 150 200 250 300 350 400

Computational Cost (Model Itegrations)

10-1

100

101

J

FIM

TIM αG=0, kmax =5

TIM αG=0.01, kmax =1

CAMU αG=0.001, αF=4

0 50 100 150 200 250 300 350 400

Computational Cost (Model Itegrations)

10-3

10-2

10-1

100

101

J
o

FIM

TIM αG=0, kmax =5

TIM αG=0.01, kmax =1

CAMU αG=0.001, αF=4

0 50 100 150 200 250 300 350 400

Computational Cost (Model Itegrations)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

In
te

rf
a
ce

 i
m

b
a
la

n
ce

 i
n
d
ic

a
to

r

FIM

TIM αG=0, kmax =5

TIM αG=0.01, kmax =1

CAMU αG=0.001, αF=4

Figure 1 : Evolution of different terms with respect to number of model iterations for few configurations

6. Conclusions and perspectives

In the framework of an iterative coupling, we set up few data assimilation algorithms.
I Adding a physical constraint on the interface conditions in the cost function can have a beneficial

effect on the performance of the method and allow to save coupling iterations
I An approach which only requires the adjoint of each individual model but not the adjoint of the

coupling showed promising results
I The methods are very sensitive to the parameters choices
I We only test the algorithms on a simple linear problem

Perspectives
I Algorithm convergence and conditioning problem when JS is part of the cost function will be

studied
I Since the objective is to apply such methods to ocean-atmosphere coupled models, increasingly

complex models including physical parameterisations for subgrid scales, and non-linearities
will be considered
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