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1. Context

Kalman filter equation
The aim of data assimilation is to provide the estimation of an unknown state X t

q of a system (at-
mosphere, ocean,..) knowing observations Yo

q and the dynamics of the system. In the case where
the estimation error is described by Gaussian distributions and for linear dynamics, the Kalman filter
equations [Kalman, 1960] provide the time evolution of the mean and of the error covariance matrix.
following {

Aq = (I− KqHq)Bq,
Bq+1 = Mq+1←qAq(Mq+1←q)

T ,
(1)

Direct computation of equations Eq.(1) is impossible for large dimension geophysical application, and
alternative strategies have been introduced to implement this algorithm, e.g. the Ensemble Kalman
Filter (EnKF) [Evensen, 2009]. Present implementations of the EnKF relies on dozen of members, and
in order to limit the sampling noise, filtering strategies are often introduced.

The parametric alternative
In this contribution we propose an alternative procedure to solve the Kalman filter equations. This
relies on a parametric approximation of the covariance matrix B and A based on the description of their
variance and local metric tensor fields.

2. Parametric formulation of the Kalman filter equations

Parametric approximation of covariance matrix
In this contribution we propose a new implementation that relies on a parametric description of covari-
ance matrices in terms of variance field (diagonal of covariance matrix) and of local metric fields. The
variance is defined as the diagonal of the covariance matrix, V b(x) = B(x ,x). The local metrix gx of an
error correlation function ρ(x ,y) = B(x ,y)/

√
VxVy is defined from the second order Taylor expansion

ρ(x ,x + δx) =
δx=0

1− 1
2
||δx ||2gx

+ o(||δx ||2), (2)

where ||x||2E = xT Ex. The construction of covariance matrix from the variance field and from the lo-
cal metric field can be achieved considering the covariance model based on the diffusion equation
[Weaver and Courtier, 2001]. In this case, the local diffusion tensor νx is related to the local metric
tensor [Pannekoucke and Massart, 2008] following νx = 1

2g−1
x . Now in order to solve the Kalman filter

equations Eq.(1) we describe how the variance and the diffusion tensor are evolving in time.

Parametric formulation of the Kalman filter analysis equation
From the assimilation of a single observation, we are able to feature the update formulation of variance
and local metric tensor [Pannekoucke et al., 2016], and in particular

νa
x =

V a
x

V b
x
νb

x . (3)

Then, by iteration of single observations, we deduce the algorithm 1

Require: Fields of νb and V b, V o and location x j of the p observations
to assimilate

1: for j = 1 : p do
2: 0- Initialization of intermediate quantities
3: V b

j = V b
x j

, V o
j = V o

x j
, νj = νb

x j

4: ρj(x) = exp
(
−1

4||x − x j ||2ν−1
j

)
5:

6: 1- Computation of analysis statistics
7: V a

x = V b
x

(
1− ρ2

j (x)
V b

j

V b
j +V o

j

)
8: νa

x = νb
x

(
1− ρ2

j (x)
V b

j

V b
j +V o

j

)
9:

10: 2- Update of the background statistics
11: V b

x ← V a
x

12: νb
x ← νa

x
13: end for
14: Return fields νa and V a

Algorithm 1: Iterated process building analysis covariance matrix at the leading order,
under Gaussian shape assumption.

Parametric formulation of the Kalman filter forecast equation
For the particular linear advection-diffusion dynamics

∂tα + c∂xα = κ∂2
xα, (4)

where c denotes the velocity and κ the diffusion rate, the time evolution of the variance and the diffusion
tensor is given at the lead order by{

∂tν
b + u∇νb = νb(∇u)T + (∇u)νb + 2κ,

∂tV b + u∇V b = −V bTr
[
(νb)

−1
κ
]
.

(5)

We refound here the conclusion of [Cohn, 1993], and extend Cohn’s result by including the effect of the
diffusion. The parametric covariance dynamics is then computed following the algorithm 2.

Require: Fields of νa and V a. δt = τ/N, t = 0
1: for k = 1 : N do
2: 1- Pure advection
3: D(x) = x + u(x , t)δt
4: ν̂b

x (t + δt) = Dxν
b
D−1(x)(t)D

T
x

5: V̂ b
x (t + δt) = V b[D−1(x), t ]

6:

7: 2- Pure diffusion
8: νb

x (t + δt) = ν̂b
x (t + δt) + 2κ(x)δt

9: V b
x (t + δt) = V̂ b

x (t + δt) |ν̂
b
x (t+δt)|1/2

|νb
x (t+δt)|1/2

10:

11: 3- Update of the background statistics
12: V b

x (t)← V b
x (t + δt)

13: νb
x (t)← νb

x (t + δt)
14: t ← t + δt
15: end for
16: Return fields νb

x (τ ) and V b
x (τ )

Algorithm 2: Lagrangian algorithm that details the iteration process to forecast the
background covariance matrix at time t = τ from the analysis covariance matrix given
at time t = 0, under local homogenity assumption.

3. Numerical experience

In order to mimic situations encountered in chemical transport model, the simple linear advection-
diffusion transport Eq.(4) of a passive species α is considered.
For the simulation, the velocity is set to c = 1 and the time step δt is fixed to the advection time step
δtadv = δx/c. The diffusion rate is set so that the diffusion time step δtdiff = δx2/κ is equal to six times
the advection time scale δtadv .
The observational network considered here is set to measure half the domain from 180◦ to 360◦, with
one observation per grid-point.
In this particular one dimensional setting, the local metric tensor verifies gx = 1

L2
x

where Lx is called the
error correlation length-scale, Lx =

√
2νx . The initial background statistics are set following Fig.1,

where the correlation is constructed from the model based on the diffusion equation, with the diffusion
coefficient field νx = 1

2Lx .

Figure: -1- Initial condition for the background error variance field (top) and length-scale field (bottom).

Fig.2 shows the comparison between the variance and the length-scale fields computed from the
Kalman filter versus the ones computed using the Parametric Kalman Filter (PKF) described by
Algorithms 1 and 2. The results of the covariance dynamics as described from the Kalman filter
equations are in continuous lines. The results obtained from PKF analysis and forecast steps is re-
produced in dashed line. The KF and the PKF can be compared with the update process proposed
by [Dee, 2003] (see [Menard et al., 2000]), thereafter called Parametric homogeneous Kalman filter
(PhKF), where only the variance is updated while the correlation function is isotropic and remains of
constant length-scale Lh = 500km (dashed-dotted line).
This diffusive advection (Fig. 2) shows that the PKF is similar to the Kalman filter. The PKF provide a
better approximation of the KF equations than the [Dee, 2003] scheme. For this case the PKF is able
to reproduce the variance attenuation due to the diffusion process, while the [Dee, 2003] scheme fails
to reproduce the KF reference. Comparing with the KF, the PKF is able to reproduce the time increase
of the length-scale due to the physical diffusion term κ > 0.

(a) (b)

(c) (d)
Figure: -2- Diagnosis of the analysis covariance matrix at iterations 1 (a), 15 (b), 30 (c) and 60 (d) in case of an
advection-diffusion dynamics. KF time evolution (continuous line), the PKF (dashed line) and the PhKF (dash dotted line).

4. Conclusions and Perspectives

A computational simplication of the Kalman filter is introduced - the Parametric Kalman filter. The full
covariance matrix dynamics of the Kalman filter, that describes the evolution along the analysis
and forecast cycle, is replaced by the dynamics of the error variance and the diffusion tensor,
which is related to the correlation length-scales. The Parametric Kalman filter developed here has been
applied to the simplified framework of advection-diffusion of a passive tracer, for its use in Chemical
Transport Model assimilation. The Parametric Kalman filter is easy to compute and, in this setting, its
computational cost is smaller than those of the EnKF. The validation of the method is presented for a
simplified one-dimensional advection-diffusion dynamics.
Extension to the nonlinear framework should be investigated e.g. by considering the Burger equation,
with application to uncertainty quantification.
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