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Motivation

Global climate is dramatically warming as a result of increases in anthropogenic greenhouse gases. The global
carbon cycle is the distribution and exchange of carbon across several pools or states. The Lund-Potsdam-Jena
General Ecosystem Simulator (LPJ-GUESS) [2] model simulates the natural ecosystem and has been used in
this study to quantify recent changes in the terrestrial carbon cycle. In all Dynamic Global Vegetation Mod-
els (DGVM) like LPJ-GUESS there are many assumptions, often with the value of process parameters (see
Figure 1), which can result in large differences from observed carbon fluxes. This study provides a method to
reduce the uncertainties of these process parameters. The method employed is a Marginal particle filter data
assimilation technique that optimizes the most sensitive process parameters driving LPJ-GUESS. The particle
filter will optimize 30 process parameters in LPJ-GUESS by minimizing the mismatch between model output
Net Ecosystem Production (NEP) and CO2 eddy flux observations.
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Figure 1: A flow chart where the input to LPJ-GUESS is shown, including some of the optimized process parameters. Along with
a stylized example of the computational areas of the ecosystem model.

Methods

The traditional particle filter was used to optimize 30 process parameters of the LPJ-GUESS model. How-
ever, the traditional particle filter suffers from filter degeneracy and as the LPJ-GUESS model is very highly
non-linear, the filter was consistently stuck in local minima.

To solve the problem of filter degeneracy we present an adapted version of the Marginal particle filter [1].
The marginal particle filter (MPF) works by filtering for the marginal distribution p(xt|y1:t) as a-posed to
p(x1:t|y1:t) employed during the traditional particle filter. This means that the MPF optimises for the latest
iteration t, while the traditional method optimises for all iterations up to the current. This simple switch greatly
limits the degrees of freedom within the joint space.

To solve for the marginal distribution we need to solve the integral in Equation 1.

p(xt|y1:t) = p(yt|xt)
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1)

That is not possible analytically, however, we can use the particle approximation (Equation 2). We choose
the solution in the form of Equation 2, which solves for the proposal density q(xt|y1:t).

q(xt|y1:t) =
N∑
j=1

w
(j)
t−1q(xt|yt, x

(j)
t−1) (2)

In Equation 2, the w term represents the weights, which are calculated using Equation 3. The weights from
Equation 3 are normalised before being used in Equation 2.

wt =
p(xt|y1:t)
q(xt|y1:t)

(3)

The weights in this form become a balance between how close the particle is to the observations and the
likelyhood of the particle being chosen from the previous pdf. This means that particles that are from the tails
of the pdf are given relatively higher weights compared to particles from the most likely centre of the pdf, if
there cost functions are the same. In this way, the MPF will maintain a wider and more sensible pdf, which is
significantly better at avoiding getting stuck in local minima, thus improving the robustness of this technique.

We go further to avoid the problems of filter degeneracy by adapting the marginal particle filter to also in-
clude a technique called tempering. This involves artificially broadening the probability density function at
the resampling step, so that particles from the tails of the distribution become much more likely. This ensures
that a much wider area of the parameter space is investigated by the filter (see Figure 2). We have adapted the
formula for the weights in the MPF (Equation 3) to include the term b, as shown in Equation 4. The trick is
to set a value of b such that we gain the benefit of searching a wider parameter space, while not going too far
and adversely slowing the computation of the filter as the parameters struggle to converge. We set a value for
bt, such that

∑M
t=1 bt = 1, where M is the number of iterations. The disadvantage of this tempering technique

is that we need to specify the number of iterations in advance.

wt =
p(y|xt)bt∑N
j=1 q(y|xt)bt

(4)
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Figure 2: A example of the re-sampling employed by the Marginal particle filter. In blue is the pdf of the traditional particle filter,
in red is the pdf of the Marginal particle filter at the re-sampling step. The green line is the likelihood of selecting this particle with
the traditional filter, while the red line is the chance of the same particle being selected using the Marginal particle filter.

Results
Our first results are from an experiment called ”The Twin”, which is designed to test the Marginal particle
filter setup. Initially, LPJ-GUESS is run using the prior parameters values to obtain a set of ”observed” NEE
values. The prior parameters values are perturbed before the full particle filter model is run using the NEE
data from the first run as observations. In this way we are testing the particle filter in a controlled environment.

1Figure 3: Each panel is the mean value of a parameter for each particle. The four parameters shown here are the shape parameter
for juvenile growth rate, maximum sapling establishment rate, minimum photosynthetically active radiation and minimum nitrogen.

We have chosen parameters from LPJ-GUESS that have the most control over the NEP, which we optimize
against using the cost function. Figure 3 shows the progression of four parameters during the optimization.
The maximum sapling establishment rate (top right), minimum photosynthetically active radiation (bottom
left) and the minimum nitrogen (bottom right) are very well constrained after the first 100 iterations, to values
within the solution uncertainty but not to the exact solution. While, Alpha R (top left) is poorly optimized by
the particle filter, which doesn’t find a stable value during the optimization.

Figure 4: This figure shows the model output CO2 flux for 1 year. In blue is the CO2 flux results from the twin solution parameter
set, while the green is the prior and red the posterior. In this case the posterior is the set of parameters obtained after 100 iterations.

We have compared the seasonal cycles in Figure 4 and find that in winter when there is no CO2 flux the prior
and posterior are both on the solution but that they diverge in the timing and magnitude of the summer uptake.
The posterior struggles to match the onset of the summer uptake in particular.
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