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2. Approach

High-resolution (convective-scale) Numeri-
cal Weather Prediction (NWP): more dynami-
cal processes related to convection and precip-
itation are resolved explicitly

2. Ensemble-based DA: relevant for convective-
scale NWP? Algorithm: perturbed obs. EnKF.
For meaningful experiments:

1. Describe a physically plausible idealised
model; investigate numerically (details in |2|)

e based on rotating SWEs: “1D symmetric”

e exhibits important aspects of convective-

. e dynamics: suitable time- and length-scales
scale dynamics

DA techniques need to evolve in order to keep

up with the developments in high-res. NWP e DA: “tuning” the observing system and en-

— disruption of large-scale balance semble configuration

— breakdown of dynamical balances at

— Initiation of daughter cells away from the
smaller scales

parent cell by gravity wave propagation

e exploiting the model’s

linearity

strong non-

— strongly nonlinear processes associated with

: : e g — convection downstream from a ridge
convection and moisture/precipitation

— move towards ensemble-based methods

4. ldealised DA experiments

It may be unfeasible, and indeed undesir-

able, to initially investigate the potential of || PYnamics: time- and length-scales localisation: P{,, < pioc o P/
DA schemes on state-of-the-art NWP models. || ® non-dimensional parameters, Rossby and | ® diagnostics: error vs spread, observational in-

fluence diagnostic (after [3]): OI = tr(I;,IK)

where HK is Kalman gain matrix in obs. space,
p 1s number of obs.

Solution: idealised models... Froude number: Ro=Fr =1

e length of domain ~ 500 km: 250 cells implies

— capture some fundamental processes O
forecast grid size of ~ 2km

— tationally i Ive to impl t
computationally 1Mexpensive to 11mplemnien e hourly cycling for 72hrs (allow ~ 24hrs spin-up

and ~48hrs to analyse)

e imperfect model setting: “truth” trajectory run | e for N ensemble members, tune the system:
at higher resolution (here, 2 x forecast res.) obs. noise ,, obs. density (e.g., observe every

e inflation: X:L-f — v(xf —x/ ) + x/ 50km), localisation scale p;,., inflation factor ~.

— extensive investigation of forecast/ assim-
ilation system in a controlled environment

Assimilation: twin model set-up

e ‘Toy’ models: a hierarchy of complexity

— ODE models (e.g., Lorenz: L63, 195, etc.)

— idealised fluid models (e.g., BV, QG)

— simplified operational NWP configurations ol diagnolstic (N = 20 [od, I(?c, inf] - [25,|2.5, 1.;5]

Domain-averaged error measures (N = 20): 50
[od, loc, Inf] = [25, 2.5, 1.25]

40}

3. Model: SWEs with ‘rain’

:\ — fc spread
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An idealised fluid model (after [1],|2]): atmo- A an spread 2
) . ) . 0.03L} \\ - - fcerr ] S
sphere with moist convection. Ingredients: - - aner 20/

0.05 Ensemble Spread and Error
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rotating shallow water equations (SWEs) + ...

e two threshold heights H. < H,: when fluid ex- - | | | | | | ;
ceeds these heights, different mechanisms kick 06300 lo 20 30 40 50 60 70 o do 2 3 a0 "0 s o
in and alter the classical SW dynamics. | | | | | | ! !
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Observing system should be tuned to give a
similar OI as operational NWP systems (~ 20%)
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e modifications to the effective pressure gradient 0.020] 1

e evolution equation for model ‘rain’ coupled to S 0015
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p'(h), otherwise, A well-configured ensemble is key to pro-

Nonlinearity of the thresholds: some mem-
bers exhibit convection /precipitation while others
do not - issues with non-Gaussianity /bi-modality

viding an adequate estimation of forecast
error: ensemble spread should be comparable to
error in both forecast and analysis

with p’ denoting the derivative of p with respect
to its argument h, and:
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(black - standard SWESs; red - modifications)

for h+b> H, and 0,u < 0,

otherwise.
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3) | IBE Current and future steps

e h = fluid depth, (u,v) = velocities, r = rain

ass fraction; all as a function of (x,t). b =
- HACTOS unction of (z,1) port the model into an open framework for DA

b(x) bottom topography

e H. H, = threshold heights, above which con-
vection and ‘rain’ processes occur; «, [, and
ci are parameters relating to the removal, pro-

duction, and evolution of ‘rain’ in the model

research?

Q. How can we use the model to ascertain
how DA algorithms manage the strong
nonlinearities associated with convection?
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