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Introduction

• Coupled data assimilation should exploit links

between model components, such as the impact

of soil moisture on near-surface air temperature.

• Instantaneous deviations commonly used in data

assimilation are related to many different sources

and often fluctuate on short time scales.

⇒ Instantaneous deviations are not well suited to

relate innovations (y − Hxf
i ) to analysis

increments (xa
i − xf

i ).

• Characteristic patterns in model-observation

deviations are better suited to update, eg., soil

moisture from near-surface air temperature:

Too wet soils lead to a slower temperature increse

in the morning and a lower mean daytime

temperature (Fig. 1).
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Figure 1: Idealised diurnal cycle of 2 m-temperature for wet soil
and dry soil conditions.

ICON-LES model setup

• We use ensemble simulations of a small, limited

domain with ICON-LES (Dipankar et al., 2015) with

a horizontal resolution of ≈ 620 m (Fig. 2).

• Initial conditions and boundary forcing are

derived from a high-resolution "virtual truth"

simulation within the DFG Research Unit FOR2131:
• COSMO coupled to CLMwith 1 km horizontal resolution (TerrSysMP,

Shresta et al., 2014)

• 15 min output time step

⇒ capture the system as realistically as possible
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Figure 2: Land cover in ICON-LES ensemble simulations. Gridlines
show resolution of the virtual truth. White dots show the
location of the bare soil and forest cells referred to in the figures.
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Figure 3: Virtual truth and remapped ICON-LES fields for
boundary and initial data. Boundary data are available every
15 min.
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Ensemble simulations with perturbed initial soil moisture

• We simulated 200 ensemble

members for 9 days in June 2010.

• The ensemble spans dry to wet soil

conditions (permanent wilting point

to field capacity at initial date).

• We analyse 5 min-output at two

points close to the centre of the

domain (see Fig. 2).
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(a) Incoming shortwave
radiation.
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(b) Precipiation

Figure 4: Incoming shortwave radiation and
precipiation for bare soil (solid) and deciduous
forest (dashed) cell. Colors represent simulation
days.
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Figure 5: Volumetric soil moisture at bare soil
cell (upper two layers = 3 cm).
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Figure 6: Volumetric soil moisture at
deciduous forest cell (upper two layers = 3 cm).

04
Jun

00:
00

04
Jun

12:
00

05
Jun

00:
00

05
Jun

12:
00

06
Jun

00:
00

06
Jun

12:
00

12

14

16

18

20

22

24

26

28

30

ai
rt

em
pe

ra
tu

re
/
◦ C

dry, bare soil
dry, forest
wet, bare soil
wet, forest

Figure 7: Air temperature at lowest model level
(≈ 10 m) for dry and wet soil.
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Figure 8: Differences between air temperature
and air temperature at the lowest model level
for three days at 9:00 UTC, respectively.

Characteristic deviations in boundary layer temperatures

• Potential characteristic

quantities are
• the temperature increase in the

morning (07:00 to 12:00 local
time),

• the mean daytime temperature
(07:00 to 19:00 local time),

• and the lapse rate (at 09:00
local time).

• They show high

correlation coefficients

with near-surface soil

moisture.

• The characterics of the

relationships change

depending on

meteorological

conditions.
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(a)Morning temp. increase vs. soil moisture at bare soil cell.
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(b)Morning temp. increase vs. soil moisture at deciduous forest cell.
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(c) Lapse rate vs. soil moisture at bare soil cell.
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(d) Lapse rate vs. soil moisture at deciduous forest cell.
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(e)Mean daytime temp. vs. soil moisture at bare soil cell.
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(f)Mean daytime temp. vs. soil moisture at deciduous forest cell.

Figure 9: Relationships between characteristic quantities derived from boundary layer temperatures and soil
moisture (colors correspond to simulation days, see above).

Potential and outlook

• Characteristic deviations in boundary layer temperature

can be useful to constrain soil moisture.

• The quality of the relationship depends on

meteorological conditions.

⇒ Include conditional sampling.

⇒ Constrain land surface parameters with characteristic

deviations.

Work in progress:

• We are preparing longer ensemble simulations

(1 year) including mixed perturbations to verify

the robustness of the characteristic deviations

and to identify conditions in which they apply.

• We plan to perturb the atmospheric forcing on

the land surface.


