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INTRODUCTION ENSEMBLE SIMULATIONS WITH PERTURBED INITIAL SOIL MOISTURE
- Coupled data assimilation should exploit links . We simulated 200 ensemble poresol loam i
between model components, such as the impact members for 9 days in June 2010. _dfbl
of soil moisture on near-surface air temperature. , 0 g [
- The ensemble spans dry to wet soil g,
- Instantaneous deviations commonly used in data conditions (permanent wilting point
assimilation are related to many different sources to field capacity at initial date). =

and often fluctuate on short time scales.
= |Instantaneous deviations are not well suited to

- We analyse 5 min-output at two

relate innovations (y — Hx) to analysis points close to the centre of the
: a _ ~f domain (see Fig. 2). Figure 5: Volumetric soil moisture at bare soil ~ Figure 7: Air temperature at lowest model level
increments (x? — x?). .

cell (upper two layers = 3cm). (=~ 10 m) for dry and wet soil.

- Characteristic patterns in model-observation
deviations are better suited to update, eg., soil
moisture from near-surface air temperature:

Too wet soils lead to a slower temperature increse
in the morning and a lower mean daytime
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precipiation for bare soil (solid) and deciduous oYy Yy Yy Yy Figure 8: Differences between air temperature
forest (dashed) cell. Colors represent simulation Figure 6: Volumetric soil moisture at and air temperature at the lowest model level
f ol days. deciduous forest cell (upper two layers =3 cm). for three days at 9:00 UTC, respectively.
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Figure 1: Idealised diurnal cycle of 2 m-temperature for wet soil = N
and dry soil conditions. s oo 5ls oos r= —0.74
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ICON-LES MODEL SETUP —
- We use ensemble simulations of a small, limited Lyl , | :
domain with ICON-LES (Dipankar et al., 2015) with | | 5§
a horizontal resolution of ~ 620 m (Fig. 2). . Potential characteristic Pl . | | | Pl | I | |
_ |nitia| Conditions and boundary forCing Jre quantltles are soil moisture anomaly 6 / m®m~3 soil moisture anomaly 6 / m3m~3
Aerfivad e & hlgh aaluiEm S ] e - the temperature increase in the (a) Morning temp. increase vs. soil moisture at bare soil cell. (b) Morning temp. increase vs. soil moisture at deciduous forest cell.
- morning (0700 tO 1200 Iocal D bare soil P deciduous broadleaf trees
simulation within the DFG Research Unit FOR2131: time), c o | | < oo |
= COSMO coupled to CLM with 1 km horizontal resolution (TerrSysMP, - the mean daytime temperature 0o e Ly 00T b
Shresta et al., 2014) (07:00 to 19:00 local time), = ool & ool
- 15 min output time step - and the lapse rate (at 09:00 2 ol /A z ol
— capture the system as realistically as possible local time). : ’F:/j : /
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Figure 2: Land cover in ICON-LES ensemble simulations. Gridlines meteorological 2 - 2 \
show resolution of the virtual truth. White dots show the diti 7 " g7 =
location of the bare soil and forest cells referred to in the figures. conditions. 5 :
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(e) Mean daytime temp. vs. soil moisture at bare soil cell. (f) Mean daytime temp. vs. soil moisture at deciduous forest cell.

Figure 9: Relationships between characteristic quantities derived from boundary layer temperatures and soil
moisture (colors correspond to simulation days, see above).

POTENTIAL AND OUTLOOK FOR 2131
. . - Characteristic deviations in boundary layer temperature LRI
Figure 3: Virtual truth and remapped ICON-LES fields for

boundary and initial data. Boundary data are available every can be useful to constrain soil moisture. Work in progress:
15 min. , , , - We are preparing longer ensemble simulations
- The quality of the relationship depends on . : . . .
(1year) including mixed perturbations to verify
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= Constrain land surface parameters with characteristic - We plan to perturb the atmospheric forcing on

deviations. the land surface.



