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 Introduction 
 In an idealised framework we study the influence 
of observations on the analysis as a function of 
correlation length scale.  

 It can be shown that for any correlation matrix C that 
its determinant is  

•  bounded above by 1 when C is equal to the 
identity and  

•  tends to zero as the correlation length scales of 
the matrix are increased. 

Therefore, it can be argued that observations with 
correlated errors have less uncertainty than if they 
were uncorrelated and so we can expect them to be 
more informative.  

 However, the influence of the observations on the 
analysis depends not only on their uncertainty but 
also on the uncertainty in the a-priori information and 
the mapping between the observations and the state. 

 Measures of influence 
The Sensitivity matrix: 
Quantifies the sensitivity of the analysis in observation 
space,         , to the observations, y. 
 
 
where H is the linearised observation matrix and K is 
the Kalman Gain (Cardinali Et al. 2004).  

Degrees of freedom for signal: 
Quantifies the degrees of freedom of a measurement 
related to signal, and is given by the expected value of 
the background cost function evaluated at the analysis 
(Rodgers, 2000). 
 

 
 
where      is the kth eigenvalue of the sensitivity matrix.  

Mutual information: 
Quantifies the reduction in uncertainty after an 
observation is made, and is therefore a function of the 
background error covariance, B, and the analysis error 
covariance, Pa (also referred to as Shannon Information 
content, Rodgers, 2000). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Results 

 Lo is the correlation length scales of the observation 
errors. Lb is the correlation length scales of 
background errors 

•  As Lo increases we see that the analysis 
becomes less sensitive to the observations at 
large scales and more sensitive to observations 
at small scales (Figure 2). However, if the 
analysis is more or less sensitive to observations 
at the small scales compared to the large scales 
depends on the ratio of Lo to Lb. 

•  In general, as Lo increases the overall information 
content of the observations increases. However, 
if Lb is large then increasing Lo may lead to a 
decrease in the total information content (Figure 
3). 

•  The sum of the analysis error variances are at a 
maximum when Lo and Lb are similar (Figure 4.) 

  

 

 

 

 

  

  

  

 

 Conclusions 

With the increasing efforts to explicitly account for 
observation error correlations in data assimilation it is 
important to have an understanding of how this 
changes the influence of the observations. 

•  The interactions between the correlations in the 
background and observation errors are very 
important for predicting the influence of the 
observations on the analysis. 

•  Observations with large error correlation 
lengthscales do not necessarily have more 
information than observation with uncorrelated 
errors if the background error correlation 
lengthscales are large.  

•  The greatest analysis accuracy is achieved when 
Lo and Lb are not equal. If Lo=Lb then in this 
idealised case Pa is proportional to B. 
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Influence of observations with 
correlated errors 

 Idealised framework 
 We consider the case when the observation error 
covariance matrix, R, and the background error 
covariance matrix mapped to observation space, 
HBHT can both be described by circulant matrices. In 
this case they can be shown to have identical 
eigenvectors, F (Gray, 2006): 

 

 

 The eigenvalues are ordered by wavenumber, with 
the first relating to the eigenvector with the largest 
length scales.   

 In this case the sensitivity matrix is also a circulant 
matrix: 

 

 and hence its eigenvalues are given by 

 

 

The SOAR correlation function: 
In the following results it is assumed that H=I and the 
correlations of B and R can both be described by a 
SOAR function: 

 

 where rk is the separation between two points and L is 
the correlation length scale. Here we assume a circular 
domain split into 16 equally space points. An example of 
the correlation function and its corresponding eigen 
spectrum is given in figure 1 for different values of L. 

 

  

References 
1.  Cardinali et al. 2004: Influence-matrix diagnostic of a data 

assimilation system. QJRMetSoc. 130, 2767–2786. 

2.  Rodgers 2000: Inverse methods for atmospheric sounding. 
World Scientific.  

3.  Gray. Toeplitz and Ciculant matrices: A Review. Now 
Publishers, 2006. 

Figure 1. The eigenvalues of the SOAR function as a function 
of wavenumber (left). The correlations as a function of grid 
point (right) 

Figure 2. The eigenvalues of the sensitivity matrix as a function 
of wavenumber and Lo when Lb=5, beta=1, rho=1. 

Figure 3. ds (left and MI (right) as a function of Lo and Lb when 
beta=1, rho=1. 

Figure 4. The trace of the analysis error covariance matrix as a 
function of Lb and Lo when beta=1, rho=1. 
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