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FE.g., for the atmosphere, the
state x(t, x,y) gathers the differ-
ent variables

« humidity H (¢, z,y):

« velocities u(t, z,y);

Given
e a physical system and its state x(t, x);

e partial observations of the system (y?);;

e a (numerical) model M simulating the evo-
lution of x; « temperature T'(¢, z,y);

o pressure p(t, z,y).

Can we estimate the initial condition x, of the system?

Variational data assimilation consists in retrieving xo by minimizing

T(xo) =Y d< HiMi(xo)

i Mapping of x, on the space of y{

)+ wd(ex).

It is common for the distance d to be a weighted £* distance. Our main goal to
use the Wasserstein distance W, instead, which seems very interesting when dealing
with dense data (see right panel). The Wasserstein cost function writes

T (x0)

Z W, (7—[ iMi(x0), y1> +wW, (xo, xo)z. (2)
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For two functions po(z) and pi(z), the square of the Wasserstein distance
Wa(po, p1) is defined as the minimal kinetic energy necessary to transport pg to py,
Op + div(pv) =0

}// plv[?dtda.
2 [0,1]xQ
p(0,z) = po(x), p(L, 2) = pr(x)

For the Wasserstein distance to be well-defined, one needs

Wa(po, 12I: inf
(1) (p(t, 2), v(t,))

po > 0,p1 >0 and pO:/plzl.
O 0

Average w.r.t the Wasserstein distance
The average, or barycenter, minimizes Wh(p, po)> + Wh(p, p1)?. It is also the
optimal p in the definition of Wa(py, p1)? at time ¢ = 1/2.
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Results :
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We control the initial condition hgy only, thanks to the Wasserstein cost function Jy. We -
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) « The minimization of i f 1 h i ing tl -
« The Wasserstein distance is only defined for probability measures, i.e. p s.t. ' mmu{uzatlon'(‘) Ji is performed through a gradlent descgn ¢, using the Wasser
stein gradient, arising from the use of the following Wasserstein scalar product de-
p>0 and /p 1 pending on py,
0
. . . For 1,1 s.t. = =
Relaxations of the latter constraint are possible, however complex; or .17 st /971 /QT7 0
«the W) interpolation works well if py and p; are of distinct support; Let @,@" st.  —div(pgV®) =7 (with Neumann BC)
. N
ewhen J(pf) — min,, J(po), then there is only weak convergence of pfi to po’" : —div(pVe') =1
oscillations or diracs can occur! Then {n, 7'y = / poVo - VI da.
« Computing the Wasserstein distance is expensive [Peyré, Papadakis, Oudet, 2013; ¢
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