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 Statistical variables 
  

Effect of RBINT on the spatial structure of moisture errors 

 

 

 

 

 

Figure 3. Original (a) and RBINT (b) relative humidity errors for 15/09/2013. 
Relationship between original and RBINT space is shown in (c). 
 

•  RBINT is symmetric for all UKV model levels. 
•  Gaussian fit of RBINT moisture errors is superior to original moisture errors. 

 Conclusions 
•  Physical variables used in global data assimilation are not suitable for convective 

scale moisture data assimilation.  
•  RBINT successfully normalises the background moisture error distributions for both 

training and testing data sets. 
•  RBINT can be implemented in operational VAR data assimilation system. 

 

 

 

 

 

 

•  Deviations from Gaussianity still present. 

What is the best choice of δφ and Ф? 

w T p q av 
δq 0.7 0.6 0.5 1.3 0.5 
δlnq 4.0 2.5 2.7 3.7 3.1 
δRH 1.8 1.3 1.1 3.0 0.8 

Table 1. Vertical mean absolute skewness for all cases.  Methodology 

 

   

  

 Physical variables 

  
Original background errors are characterised by double 
exponential (Laplace) distributions. 

•  Background moisture errors are calculated by taking the 
difference between 6h and 3h forecast fields valid at the 
same time (NMC method).  

•  Model data is taken from the United Kingdom Variable (UKV) 
model – the high-resolution version of the Met Office Unified 
Model (UM). 
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Figure 1. a) Unconditioned moisture error distributions of q, 
lnq and RH; b) RH error distributions conditioned on the 
background 3h RH field.  
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Hólm’s tranform (Hólm, 2003) 
                                      δφ  :  moisture analysis increment   

              Φ    :  stratifying variable 
              σ,b :  standard deviation and bias !!

δϕ '=
δϕ −bδϕ(Φ)
σδϕ(Φ)

Bulk Distribution Analysis 
The best BDA candidates are determined according to 
mean absolute skewness. 

Detailed Distribution Analysis 

•  Similar performance to nonlinear version of Hólm’s 
transform. 

Rank-Based Inverse Normal Transform (RBINT) 
 
 

                          (Beasley and Erickson, 2009)     

G : normal CDF  rδφ : relative rank 
N : sample size  c : constant offset 
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RBINT performance according to BDA-DDA procedure 

Small errors are inflated, whereas large errors are compressed. 

•  RBINT requires: 
a)  NMC climatology; 
b)  Definition for rδφ. 

Figure 4. a) Vertical skewness profile; b) normal probability plot of δq (no linear 
interpolation) for the testing data set and model level 20; c) relative skill score (RSS). 

Moisture variables are characterised by non-Gaussian 
error distributions which make them hard to assimilate, 
especially at the convective scale. The current study 
examines two distinct approaches to alleviate this 
problem. The first one tests the suitability of physical 
moisture variables, while the second one introduces a 
novel statistical transformation to normalise the moisture 
error distributions. 

Introduction 
  

Figure 2. Normal probability plots for δq|p3h. 


