Diagnosis and normalisation of

wavelet-induced background error variances

Vincent Chabot, Loïk Berre, Gérald Desroziers

CNRM UMR 3589, Météo-France/CNRS, Toulouse, France

Introduction

• Needs to approximate and model matrix **B**.

A wavelet block-diagonal approach (Fisher, 2003) is used operationally at Météeo-France (Berre et al., 2015), in the global model ARPEGE, and at ECMWF (Bonavita et al., 2016).

• Wavelet **B** computed from an ensemble to get flow-dependent correlations.

Local spatial averages of correlations (through the wavelet block-diagonal approach), which reduces sampling noise effects.

Block-diagonal approach has an effect on specified grid point variance.

Diagnosis and renormalisation of wavelet induced variances.

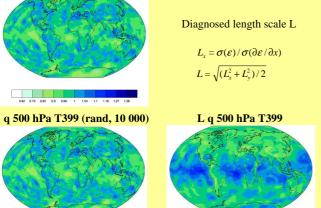
Wavelet induced variance fields

Wavelet induced variance fields can be obtained by formally computing the variance of random draws of the form $\boldsymbol{\sigma}^2 = \boldsymbol{var} (\mathbf{W}^{-1} \mathbf{D}^{1/2} \boldsymbol{\eta}),$

where η are uncorrelated random draws.

Using the fact that **D** contains no inter-scale correlations but also no spatial correlations for a given scale j, it is possible to show that

 $\boldsymbol{\sigma}^2 = \widetilde{\boldsymbol{W}}^{-1} \, \boldsymbol{d},$ where d concatenates wavelet grid point variance fields for all scales j, and


 $\widetilde{\mathbf{W}}^{-1} = (\mathbf{S}^{-1} \hat{\widetilde{\mathbf{R}}}_0 \mathbf{S} \dots \mathbf{S}^{-1} \hat{\widetilde{\mathbf{R}}}_J \mathbf{S})$ is a wavelet-like inverse transform with diagonal matrices $\tilde{\mathbf{R}}_{i}$ containing the spectral coefficients

 $\hat{\tilde{r}}_i[n] = \tilde{h}_i[n] / \sqrt{2n+1}$ of $\tilde{\mathbf{h}}_i = \mathbf{h}_i^2$, with n total spectral wave number, and $\hat{\mathbf{h}}_i[\mathbf{n}] = \hat{\mathbf{r}}_i[\mathbf{n}]\sqrt{2\mathbf{n}+1}.$

 $\tilde{\mathbf{W}}^{-1}$ can be built easily from the existing code \mathbf{W}^{-1} .

Diagnosis of wavelet-induced standard deviations

q 500 hPa T399 (exact)

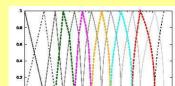
0.62 0.73 0.82 0.9 0.96 1 1.04 1.1 1.18 1.27

1

3

Wavelet block-diagonal representation of C:

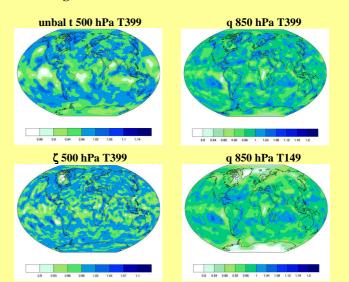
 $\mathbf{B} = \mathbf{P} \, \mathbf{\Lambda}^{1/2} \, \mathbf{C} \, \mathbf{\Lambda}^{T/2} \, \mathbf{P}^{T}$


P balance operator, $\Lambda^{1/2}$ contains grid-point σ^{b} , **C** contains correlations.

Wavelet B

 $\mathbf{C} = \mathbf{W}^{-1} \mathbf{D} \mathbf{W}^{-T}.$

B modelled as a sequence of operators:


where $\mathbf{W}^{-1} = (\mathbf{S}^{-1}\hat{\mathbf{R}}_0 \mathbf{S} \dots \mathbf{S}^{-1}\hat{\mathbf{R}}_J \mathbf{S}),$ and $\hat{\mathbf{R}}_{i}$ are diagonal matrices containing filters $\hat{\mathbf{r}}_{i}$.

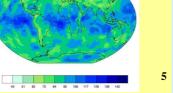
Filters $\hat{\mathbf{r}}_0$ (left) to $\hat{\mathbf{r}}_{13}$ (right) used in wavelet transform at T149

2

Diagnosis of wavelet-induced standard deviations

Conclusion

- Wavelet block-diagonal representation of C at Météo-France and ECMWF.
- Mathematical expression of induced variance fields.
- Possible computation by re-using and modifying wavelet code.
- Cheaper and more precise computation than with randomisation.


Deviation from 1 depends on variable, level and spectral resolution,

- but remains mainly small. Relationship with correlation length scale:
 - $\sigma < 1$: large L,
 - $\sigma > 1$: small L, with respect to surrounding areas.

A normalisation of variance fields can be applied and brings slightly positive results.

V. Chabot, L. Berre and G. Desroziers, 2016: Diagnosis and normalisation of wavelet-induced background error variances. Q. J. R. Meteor. Soc. To be submitted.

