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Abstract

Data assimilation is often used to help make sense of observations made from the traditional
meteorological observing systems, from new radar networks, and from space. Effective data
assimilation relies on accurate uncertainty statistics of all the data that are used, including
those of observations and from the numerical model's forecasts used as the prior ('back-
ground’) state.

The background error covariance scheme used in the Met Office’s current variational data
assimilation system is designed to represent errors in large-scale processes, even though many
of the models that it serves allow small-scale (convective-scale) process. The work reported
here looks at how well the Met Office’s current scheme copes with fine-scale features of

numerical models and reveals some unexpected characteristics.
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General idea of data assimilation (DA)

e The forecast (xp, blue) has errors that
are correlated between model variables
1 and 9.

e The observation (y, yellow) is an im-
perfect observation of only .

e The analysis (x4, red) is a combination
of xg and y found from Bayes Theo-
rem.

e The way that xg and y are combined

, Fig. 1: Combini del f t (back d stat
depend Strongly on their error proper- g ombining a model forecast (background state,

xp) with an observation (y) to give an analysis (x4). The
ties. coloured shapes indicate the error co-variances of the data. In
the case of the background state, errors in components x; and
xo are correlated. Here there is only one observation (of z1).
The analysis and its uncertainty depend upon xg, y and how
their errors are characterised.



Data assimilation for large-scale systems

e The B-matrix (describing the blue error bubble in Fig. 1) is modelled by allowing
forecast errors to respect geostrophic (Fig. 2) and hydrostatic (Fig. 3) balances.

e This is good for large-scale motion where the flow is balanced.

pressure perturbations  dp = dpy,(dvy) + 0py
temperature perturbations 86 = d6,(0py,) + 0
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Fig. 2: Schematic evolution of dp
in a large-scale system (where geostrophic
balance is appropriate). The rotational
wind, 0v,, correctly predicts dpy, by
geostrophic balance. On top of that is
geostrophically unbalanced pressure, dp,.
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Fig. 3: Schematic evolution of
0T in a large-scale system (where hydro-
static balance is appropriate). dp cor-
rectly predicts 073, by hydrostatic balance.
The hydrostatically unbalanced tempera-
ture, 071y, is negligible.
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Data assimilation for convective-scale systems (cur-
rently 1.5km model grid box size)

e Interest is expanding into convective-
scale DA.

— Observation hungry.
— Shorter predictability timescales.
— Many scales of motion.

x Balance appropriate for the
larger scales of motion.

x Balance diminishing for the
smaller scales.

e DA systems still model the B-matrix with balance relations. We hypothesize that in
such DA:

— This will make the DA go awry (Fig. 4).
— Analysis increments of dp;, will be anomalously large.

— Analysis increments of dp, will also be anomalously large (and opposite to dpy,),
trying to undo the false dpy,.

x .. Opy, and dp, will be anomalously correlated.

— We can diagnose these properties from an ensemble of convective-scale forecasts.

— We can artificially "damp-down’ the balance as a function of scale.
op = Npp(0vy) + 0py

where A < 1 is a damping factor which has the expected properties:

large-scale motion A =1
small-scale motion A — 0

Fig. 4: Hypothesised evolution
of temperature in a convective-scale sys-
tem (where geostrophic balance is inap-
propriate). The rotational component of
the wind incorrectly predicts the balanced
pressure.
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Diagnostics from a Met Offtice 24-member convective-
scale ensemble (Southern UK domain)

e Standard variational DA uses the background error covariances implied by the B-matrix
model (different from the true covariances):

Valtue(0p) = Valimplied(9p) + anomaly,
where anomaly = 2cov(dpLdp,) = 2cov(dpp[0p — dIpy)),
opy pressure perturbation found from the geo. bal. equation,
Op, : residual, dp, = op — opy.

e Stats for a mid-tropospheric level (level 35) are in Fig. 5.
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Fig 5: First row: true pressure variance (lev. 35) (var(dp)) from the Met Office ensemble when a cold front is traveling
eastwards; the balanced variance (var(dpy)); the unbalanced variance (var(ép,)). Second row: implied pressure variance
(var(opy) + var(dpy)); the relative anomaly (2cov(dpLdp,)/var(dp)); statistics as a function of horizontal scale. The
implied pressure variance is that 'seen’ by the DA if it were calibrated by the ensemble. For a perfect model of B this
would be the same as the true pressure variance.

e Modifying the balance:

= Valimplied(Op) + anomaly,

2cov(Adpp[0p — Adpy)).

Valtrue (5]? )
where now anomaly

e |ooking for zero anomaly, and A can be estimated from data:

~ cov(dppop)

A
var(dpy)

0,

e Values for A are in Fig. 6.
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Fig 6: Value of A which is needed to multiply the diagnosed dpy, to give zero pressure variance anomaly in the data
assimilation. Left: A as a function of position. Middle: A as a function of horizontal scale. Right: A as a function of
horizontal wave-vector.

Comments

e The 'balanced pressure scaling factor’ (A\) diagnosed here does not behave as expected.

— |t is not found that A — 0 for smaller scales.
— It is not found that A <1 always.

e These experiments need to be repeated for other data sources:

— QOther ensembles.

— Sets of forecast differences as a proxy for forecast errors.

e Hydrostatic balance remains a good approximation, even at the smallest scales in this
model.

e Even though Meteorological centres around the world are starting to use ensemble-
based DA, it is normally in a hybrid form where the B-matrix is still needed.




