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Abstract

Assimilation of humidity information (e.g. specific humidity, ¢) has raised some
interesting and challenging issues (see above). One such issue is its non-Gaussianity,
which is an inevitable property given the bounded nature of specific humidity (0 <
q < @sat)- 1here have been various attempts in the last decade to account for this
non-Gaussianity in the background errors of ¢ in operational data assimilation systems.
Here we compare the merits of two of them, namely (i) Gaussian anamorphosis, and
(i) the 'symmetrising’ transform of H6lm et al. (2002) - used by Gustaffson et al.
(2011) and later adapted by Ingleby et al. (2013). Empbhasis is placed on assimilation

In convective-scale models.
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transform
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How to incorporate non-Gaussian stats in DA

1. The particle filter

e Very general. Unsuitable for operational use (currently ... ).

2. Transform between 'non-Gaussian’ and 'Gaussian’
perturbations

ox = T(0x)

T T
0x : has  dz: (model space) has

Gaussian bg errors  non-Gaussian bg errs

e Example: log-normal transformation.

e .. or more generally: "Gaussian anamorphosis'.
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Method a la HAOIm

e In DA, op (the background error value averaged between the back-

standard deviation) modulates how ground and analysis values:

much we are allowed to modity xp.

op ([rg + x4a]/2) .
e op can be a function of RH. _
Given
A
O
B xA = TR+ 0z,

this leads to the implicit non-linear
Hélm transform:

ox
ox = oI
| > OB (ZCB—I— CC/ )
0 RH (%) 100 e The allowed increments reduce

| closer to the boundaries.
e In Holm's method the standard de-

viation, op, is a function of the RH



Basis of HA6Ilm's transform

e If 21 and x5 are independent and drawn from the same distribution then dx =
r1 — T9 has a symmetric distribution when conditioned on T = (x1 + x2)/2.

" Proof:
dox 0T
p($1,$2) :p<5$,T> % % ' :p(éx,f)
Oxrg Ox9
C.p(—02, %) = p(we, 1) = p(1, 22) = p(dx, T)
_,_ p(dx,T) _ _
p(ox|T) = — Sopldz|T) = p(—dz|T
5 (pafr) = 202 (82 [7) = p(~bz7)

e Consider the law of total probability:

p(Sz) = / " 46 plsald)n(o).

@)

where p(dx|@) is the probability conditioned on an arbitrary variable ¢.

— If p(dx|¢@) is a Gaussian with the same mean and variance V¢, then p(dx)
is also Gaussian.

— If we could find a conditioning, p(dz|®), such that this is true, then we
may construct a Gaussian (or at least symmetric) variable.

e Strategy:

— Find p(dx|¢) which is close to Gaussian.
— Construct a new variable which has mean 0 and variance 1:

~ 0x —ox(9)
X =5 Gale)

— Choose ¢ = T then the conditional distribution has zero mean, §z(Z) = 0,
and Hélm's transform follows.



Notes on HAOlm's transform

No transform of the form dxy = a dx where a > 0 can turn an arbitrary asymmetric
distribution into a symmetric distribution.

/ Proof: N
e A symmetric distribution has its median at zero: p(dx < 0) = /2.
e Suppose p(dx) is asymmetric in such a way that p(dx < 0) # 1/2.
e The transform preserves the sign of dx . ..

e . sop(dy <0)=pldxr<0)#£12

\_® The distribution of 0 cannot therefore be symmetric. W

Test with some synthetic data
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We do however expect H6lm's transform to have some useful properties for data
assimilation.




Monte-Carlo data assimilation experiments

e Background error PDFs are computed from 35 pairs of RH forecasts from the

MetO UKV model.

— NMC method.
— "T"+ 6" minus T' + 3" forecast error proxy.
— Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.

e Run an ensemble of scalar data assimilations (10° samples).

— Obs sampled from a Gaussian with oo = 2% (allowed to go 'out of

bounds’).

— Bgs sampled from the relevant non-Gaussian (allowed to go 'out of bounds').
e Assimilation performed with anamorphosis:

— Controls: Gaussian DA with og found from non-Gaussian distribution.

— Tests: Non-Gaussian DA.

e Assimilation performed with Hélm:

— Controls: Gaussian DA with op found from non-Gaussian distribution.

— Tests: Non-Gaussian DA with Hélm normalisation.



Anamorphosis results

Gaussian DA

non-Gaussian DA

Anamorphosis: DA Gaussian, xt = 2.01%

Anamorphosis: DA non-Gaussian, xt = 2.01%
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o according to Holm

Constant op

HAlm results

| - 1] o~
= , &
: S 5 < s o O
A= M [ . S
S| = <~ i - il i =
I ! i .
: I : I : _ |
m . < \AU} P M — M . x % Py
a << s <t : =«
m_ ° < p m p W‘ m% > (p
3 ; g ~— 5
? 8 W ’ = W ’ = W
— QO = D) & s O
o A k M k s < k
E QR = n < 0
H = p
) ox_\cwa ‘(xyed .oo%a ) ) | aooa (x)ed ‘(qd ° ° ox_awa owd _oooo_a °

" Sample blg ——
al le obs
104

j Sample b/g -

2.01%

, Xt =61%
, Xt = 99%

102

100

skew(pa) = 1.030

~—o
~—o
~—1
4
o~
i
yl
M\Q

i
i

pA(ZL’ < O) = (0.022

skew
il

pa(z > 100) = 0.156

skew(pa )

s ® © = ~ v o u
s & 3 8 & 9 3 8
3 S S S

92

.
9 o i} o 0
S ] bl o S
S 3 2

0.4
0.35
0.
2!
02+
0.15
0.
0.05

(|A)od “(x)ed ‘(x)ad (xI£)od “(x)ed ‘(x)qd (xIf)od “(x)ed ‘()qd

A

a

wnipsin ISION




Conclusions

e Non-Gaussianity of errors should be considered in many circumstances . . .
— Avoids ‘out-of-bounds’ in DA.

e .. but most operational DA schemes rely on Gaussianity.

e Non-Gaussianity can be accounted for using many methods:

— Particle filters.
— Transform methods:

* (Gaussian anamorphosis.

* (Special example log-normal).

— Non-constant normalisation:

* As Holm.

e We consider non-Gaussian background errors, but observations can also be
non-Gaussian.

e Gaussian anamorphosis uses the correct non-Gaussian distribution.

e Holm attempts to control analysis increments based on a variable o that is a
function of the average of the background and the analysis.

e Gaussian anamorphosis is more successful than H6lm in our experiments.
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