Non-Gaussianity of Moisture Errors in Data Assimilation

Abstract

Assimilation of humidity information (e.g. specific humidity, q) has raised some interesting and challenging issues (see above). One such issue is its non-Gaussianity, which is an inevitable property given the bounded nature of specific humidity ($0 \leq q \leq q_{sat}$). There have been various attempts in the last decade to account for this

non-Gaussianity in the background errors of q in operational data assimilation systems. Here we compare the merits of two of them, namely (i) Gaussian anamorphosis, and (ii) the 'symmetrising' transform of Hólm et al. (2002) - used by Gustaffson et al. (2011) and later adapted by Ingleby et al. (2013). Emphasis is placed on assimilation in convective-scale models.

Keywords: Background error covariances, Non-Gaussianity, Gaussian anamorphosis, Hólm transform

How to incorporate non-Gaussian stats in DA

1. The particle filter

• Very general. Unsuitable for operational use (currently ...).

2. Transform between 'non-Gaussian' and 'Gaussian' perturbations

$$\delta \chi = T(\delta x)$$

$$\uparrow \qquad \uparrow$$

$$\delta \chi : \text{ has } \quad \delta x : \text{ (model space) has}$$
Gaussian bg errors non-Gaussian bg errs

- Example: log-normal transformation.
- ... or more generally: 'Gaussian anamorphosis'.

Method à la Hólm

- In DA, $\sigma_{\rm B}$ (the background error standard deviation) modulates how much we are allowed to modify $x_{\rm B}$.
- $\sigma_{
 m B}$ can be a function of RH.

value averaged between the background and analysis values:

$$\sigma_{\rm B}\left([x_{\rm B}+x_{\rm A}]/2\right).$$

Given

 $x_{\rm A} = x_{\rm B} + \delta x,$

this leads to the implicit non-linear Hólm transform:

$$\delta \chi = \frac{\delta x}{\sigma_{\rm B} \left(x_{\rm B} + \delta x/2 \right)}.$$

- The allowed increments reduce closer to the boundaries.
- In Hólm's method the standard deviation, $\sigma_{\rm B}$, is a function of the RH

Basis of Hólm's transform

• If x_1 and x_2 are independent and drawn from the same distribution then $\delta x = x_1 - x_2$ has a symmetric distribution when conditioned on $\overline{x} = (x_1 + x_2)/2$.

Proof:

$$p(x_1, x_2) = p(\delta x, \overline{x}) \begin{vmatrix} \frac{\partial \delta x}{\partial x_1} & \frac{\partial \overline{x}}{\partial x_1} \\ \frac{\partial \delta x}{\partial x_2} & \frac{\partial \overline{x}}{\partial x_2} \end{vmatrix} = p(\delta x, \overline{x})$$

$$\therefore p(-\delta x, \overline{x}) = p(x_2, x_1) = p(x_1, x_2) = p(\delta x, \overline{x})$$

$$p(\delta x | \overline{x}) = \frac{p(\delta x, \overline{x})}{p(\overline{x})} \qquad \therefore p(\delta x | \overline{x}) = p(-\delta x | \overline{x})$$

• Consider the law of total probability:

$$p(\delta x) = \int_{-\infty}^{\infty} d\phi \; p(\delta x | \phi) p(\phi),$$

where $p(\delta x | \phi)$ is the probability conditioned on an arbitrary variable ϕ .

- If $p(\delta x | \phi)$ is a Gaussian with the same mean and variance $\forall \phi$, then $p(\delta x)$ is also Gaussian.
- If we could find a conditioning, $p(\delta x | \phi)$, such that this is true, then we may construct a Gaussian (or at least symmetric) variable.
- Strategy:
 - Find $p(\delta x | \phi)$ which is close to Gaussian.
 - Construct a new variable which has mean 0 and variance 1:

$$\delta \chi = \frac{\delta x - \delta x(\phi)}{\sigma(\delta x | \phi)}.$$

- Choose $\phi = \overline{x}$ then the conditional distribution has zero mean, $\overline{\delta x(\overline{x})} = 0$, and Hólm's transform follows.

Notes on Hólm's transform

No transform of the form $\delta \chi = a \, \delta x$ where a > 0 can turn an arbitrary asymmetric distribution into a symmetric distribution.

Proof:

- A symmetric distribution has its median at zero: $p(\delta\chi < 0) = 1/2$.
- Suppose $p(\delta x)$ is asymmetric in such a way that $p(\delta x < 0) \neq 1/2$.
- The transform preserves the sign of δx . . .

• ... so
$$p(\delta\chi < 0) = p(\delta x < 0) \neq 1/2$$
.

• The distribution of $\delta\chi$ cannot therefore be symmetric.

We do however expect Hólm's transform to have some useful properties for data assimilation.

Monte-Carlo data assimilation experiments

- Background error PDFs are computed from 35 pairs of RH forecasts from the MetO UKV model.
 - NMC method.
 - 'T + 6' minus 'T + 3' forecast error proxy.
 - Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.
- Run an ensemble of scalar data assimilations (10^6 samples).
 - Obs sampled from a Gaussian with $\sigma_{\rm O}=2\%$ (allowed to go 'out of bounds').
 - Bgs sampled from the relevant non-Gaussian (allowed to go 'out of bounds').
- Assimilation performed with anamorphosis:
 - Controls: Gaussian DA with $\sigma_{\rm B}$ found from non-Gaussian distribution.
 - Tests: Non-Gaussian DA.
- Assimilation performed with Hólm:
 - Controls: Gaussian DA with $\sigma_{\rm B}$ found from non-Gaussian distribution.
 - Tests: Non-Gaussian DA with Holm normalisation.

$$p_{\rm A}(x > 100) = 0.056$$

skew $(p_{\rm A}) = -1.739$

$$p_{\rm A}(x > 100) = 0.008$$

skew $(p_{\rm A}) = -2.684$

Hólm results

0.1 0.05

Moist

 $p_{\rm A}(x > 100) = 0.156$ $\operatorname{skew}(p_{\rm A}) = -0.183$

 $p_{\rm A}(x > 100) = 0.192$ $\mathrm{skew}(p_{\mathrm{A}}) = 0.096$

0.1

0.05

Conclusions

- Non-Gaussianity of errors should be considered in many circumstances
 - Avoids 'out-of-bounds' in DA.
- ... but most operational DA schemes rely on Gaussianity.
- Non-Gaussianity can be accounted for using many methods:
 - Particle filters.
 - Transform methods:
 - * Gaussian anamorphosis.
 - * (Special example log-normal).
 - Non-constant normalisation:
 - * As Hólm.
- We consider non-Gaussian background errors, but observations can also be non-Gaussian.
- Gaussian anamorphosis uses the correct non-Gaussian distribution.
- Hólm attempts to control analysis increments based on a variable $\sigma_{\rm B}$ that is a function of the average of the background and the analysis.
- Gaussian anamorphosis is more successful than Holm in our experiments.

References

- Hólm E., Andersson E., Beljaars A., Lopez P., Mahfouf J.-F., Simmons A., Thépaut J.-N., Assimilation and modelling of the hydrological cycle: ECMWF's status and plans, ECMWF Tech. Memo. 383 (2002).
- Gustafsson N., Thorsteinsson S., Stengel M., Hólm E. Use of a nonlinear pseudo-relative humidity variable in a multivariate formulation of moisture anal-

ysis, Q.J.R.Meteor.Soc. 137, 1004-1018 (2011).

 Ingleby N.B., Lorenc A.C., Ngan K., Rawlins F., Jackson D.R., Improved variational analyses using a nonlinear humidity control variable, Q.J.R.Meteor.Soc. 139, 1875-1887 (2013).

Please also see poster by Hristo Chipilski (poster No. 9 on Wednesday)