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Non-Gaussianity of Moisture Errors in Data
Assimilation

Abstract

Assimilation of humidity information (e.g. speci�c humidity, q) has raised some
interesting and challenging issues (see above). One such issue is its non-Gaussianity,
which is an inevitable property given the bounded nature of speci�c humidity (0 ≤
q . qsat). There have been various attempts in the last decade to account for this
non-Gaussianity in the background errors of q in operational data assimilation systems.
Here we compare the merits of two of them, namely (i) Gaussian anamorphosis, and
(ii) the 'symmetrising' transform of Hólm et al. (2002) - used by Gusta�son et al.
(2011) and later adapted by Ingleby et al. (2013). Emphasis is placed on assimilation
in convective-scale models.

Keywords: Background error covariances, Non-Gaussianity, Gaussian anamorphosis, Hólm

transform
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How to incorporate non-Gaussian stats in DA

1. The particle �lter

• Very general. Unsuitable for operational use (currently . . . ).

2. Transform between 'non-Gaussian' and 'Gaussian'

perturbations

δχ = T (δx)

↑ ↑
δχ : has δx : (model space) has

Gaussian bg errors non-Gaussian bg errs

• Example: log-normal transformation.

• . . . or more generally: 'Gaussian anamorphosis'.
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Mapping

Method à la Hólm

• In DA, σB (the background error
standard deviation) modulates how
much we are allowed to modify xB.

• σB can be a function of RH.

• In Hólm's method the standard de-
viation, σB, is a function of the RH

value averaged between the back-
ground and analysis values:

σB ([xB + xA]/2) .

Given

xA = xB + δx,

this leads to the implicit non-linear
Hólm transform:

δχ =
δx

σB (xB + δx/2)
.

• The allowed increments reduce
closer to the boundaries.
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Basis of Hólm's transform

• If x1 and x2 are independent and drawn from the same distribution then δx =
x1 − x2 has a symmetric distribution when conditioned on x = (x1 + x2)/2.'
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Proof:

p(x1, x2) = p(δx, x)

∣∣∣∣∣ ∂δx∂x1

∂x
∂x1

∂δx
∂x2

∂x
∂x2

∣∣∣∣∣ = p(δx, x)

∴ p(−δx, x) = p(x2, x1) = p(x1, x2) = p(δx, x)

p(δx|x) = p(δx, x)

p(x)
∴ p(δx|x) = p(−δx|x)

• Consider the law of total probability:

p(δx) =

ˆ ∞
−∞

dφ p(δx|φ)p(φ),

where p(δx|φ) is the probability conditioned on an arbitrary variable φ.

� If p(δx|φ) is a Gaussian with the same mean and variance ∀φ, then p(δx)
is also Gaussian.

� If we could �nd a conditioning, p(δx|φ), such that this is true, then we
may construct a Gaussian (or at least symmetric) variable.

• Strategy:

� Find p(δx|φ) which is close to Gaussian.

� Construct a new variable which has mean 0 and variance 1:

δχ =
δx− δx(φ)
σ(δx|φ)

.

� Choose φ = x then the conditional distribution has zero mean, δx(x) = 0,
and Hólm's transform follows.
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Notes on Hólm's transform

No transform of the form δχ = a δx where a > 0 can turn an arbitrary asymmetric
distribution into a symmetric distribution.
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Proof:

• A symmetric distribution has its median at zero: p(δχ < 0) = 1/2.

• Suppose p(δx) is asymmetric in such a way that p(δx < 0) 6= 1/2.

• The transform preserves the sign of δx . . .

• . . . so p(δχ < 0) = p(δx < 0) 6= 1/2.

• The distribution of δχ cannot therefore be symmetric.

Test with some synthetic data
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We do however expect Hólm's transform to have some useful properties for data
assimilation.
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Monte-Carlo data assimilation experiments

• Background error PDFs are computed from 35 pairs of RH forecasts from the
MetO UKV model.

� NMC method.

� 'T + 6' minus 'T + 3' forecast error proxy.

� Dry (RH 2%), medium (RH 61%) and moist (RH 99%) scenarios.

• Run an ensemble of scalar data assimilations (106 samples).

� Obs sampled from a Gaussian with σO = 2% (allowed to go 'out of
bounds').

� Bgs sampled from the relevant non-Gaussian (allowed to go 'out of bounds').

• Assimilation performed with anamorphosis:

� Controls: Gaussian DA with σB found from non-Gaussian distribution.

� Tests: Non-Gaussian DA.

• Assimilation performed with Hólm:

� Controls: Gaussian DA with σB found from non-Gaussian distribution.

� Tests: Non-Gaussian DA with Hólm normalisation.
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Anamorphosis results

Gaussian DA non-Gaussian DA
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Hólm results

Constant σB σB according to Hólm
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8

Conclusions

• Non-Gaussianity of errors should be considered in many circumstances . . .

� Avoids 'out-of-bounds' in DA.

• . . . but most operational DA schemes rely on Gaussianity.

• Non-Gaussianity can be accounted for using many methods:

� Particle �lters.

� Transform methods:

∗ Gaussian anamorphosis.

∗ (Special example log-normal).

� Non-constant normalisation:

∗ As Hólm.

• We consider non-Gaussian background errors, but observations can also be
non-Gaussian.

• Gaussian anamorphosis uses the correct non-Gaussian distribution.

• Hólm attempts to control analysis increments based on a variable σB that is a
function of the average of the background and the analysis.

• Gaussian anamorphosis is more successful than Hólm in our experiments.
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