First Assimilation of Rotational Raman Lidar Temperature Data into WRF
Stephan Adam, Andreas Behrendt, Thomas Schwitalla, Eva Hammann and Volker Wulfmeyer
University of Hohenheim, Institute of Physics and Meteorology, 70593 Stuttgart, Germany.
Email: stephan_adam@uni-hohenheim.de

Introduction

• Lag of real time observations of the lower tropospheric temperature with sufficient vertical resolution to resolve temperature inversions [1, 2]
• Temperature Rotational Raman Lidar (TRRL) makes use of inelastic backscattered laser radiation to observe the atmospheric temperature continuously
• The boundary layer height and the inversion strength can be determined with TRRL
• The systematic error of the University of Hohenheim (UHH) TRRL is considerably less than 1K [3, 4]
• The statistical error scales with the spatial and the temporal averaging (Eq. 1)
• With averaging times of about 1 min and a spatial resolution of about 100 m, the noon time noise error of the UHH TRRL is less than 1 K up to 1500 m [5]
• No complex forward operator is necessary, as the temperature is a first level product
• No drift occurs in profiles observed by lidars
• With multiple ways of averaging and the good representativeness of the observations, lidar is very interesting for data assimilation [6, 7]

Experimental Setup

Fig. 1: Used dataset
• WRF Version 3.5.1
• 601 x 682 gridpoints at 3 km horizontal resolution
• 57 levels up to 500 hPa with 35 levels in the lowest 1.5 km
• B-Algorithm calculated by the HMC Method for 32 levels at 1 km resolution of July 2012
• Radiation day with well developed convective boundary layer

Fig. 2: Rapid update cycle approach with hourly 3DVARs
• 3 different experiments: ALL_DA = TRRL and conventional data
• CONV_DA = conventional data
• NO_DA = no assimilated data
• Rapid Update Cycle with hourly 3DVARs [9]
• TRRL profiles assimilated with the radiosonde operator from 500 m AGL to 3000 m AGL
• Smoothed with 10 m running average and reduced to one value each 37.5 m
• Hourly averaged TRRL profiles; \(\Delta_m \) = 0.5 K; shown as observation error for the whole profile

Tab. 1: Assimilated observations per 3DVAR

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Conventional Data</th>
<th>TRRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>AMDAR, AMV, GNSS-3D, METDA, PROFIL, SYNOP, TEMP</td>
<td>TRRL</td>
</tr>
<tr>
<td>Number of Assimilated Observations / 3DVAR</td>
<td>1383 – 1724 – 1000 – 264 – 50 – 57</td>
<td>1183 – 0 – 26</td>
</tr>
</tbody>
</table>

• The conventional data were summarised in 1-hour observation windows and assimilated each full hour
• 4 Radiosonde (RS) ascents close to the UHH TRRL were not assimilated and used additionally for verification of model results

Fig. 3: Temperature observed with the UHH TRRL during the assimilation day

Eq. 1: Statistical error of the TRRL
\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (T_{\text{TRRL}}(i) - T_{\text{REF}}(i))^2}
\]

Fig. 4: Expected statistical errors for different atmospheric observations

Impact on the Temperature Profiles

Fig. 5: Temperature profiles for the four times RS ascents were available

Fig. 6: (a) RMSE of the T profiles (b) RMSE of T profiles

Tab. 2: Overall RMSE between 700 and 3000 m AGL between T_{\text{NO_DA}} and T_{\text{TRRL}}

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV_DA</td>
<td>0.8</td>
</tr>
<tr>
<td>NO_DA</td>
<td>0.01</td>
</tr>
<tr>
<td>TRRL</td>
<td>0.12</td>
</tr>
<tr>
<td>RS</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Summary

• RMSE to the TRRL profiles in ALL_DA half as large as in CONV_DA
• Boundary layer height \(z_i \) was improved by 50 m in the mean compared to CONV_DA
• The mean temperature Gradient \(T_{\Delta m} \) in the entrainment zone was improved by 0.19 K [100 m] compared to CONV_DA
• Impact of the TRRL data spreads flow dependant in between the 3DVARs in the rapid update cycle
• Correlation with the water vapour mixing ratio \(q_i \) was observed in the B-Matrix
• A network of TRRL and WVRRL could close the gap of high resolution lower tropospheric thermodynamic observations

Boundary Layer Height and Inversion Strength

Fig. 7: (a) RMSE of the T profiles compared to \(T_{\text{CONV}} \) and T_{\text{TRRL}}

Fig. 8: PBL height

Tab. 3: Statistical analysis of \(\Delta T \) and \(\Delta q \) assuming same subscripts as in Fig. 6

<table>
<thead>
<tr>
<th>Method</th>
<th>(\Delta T) (K)</th>
<th>(\Delta q) (g kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_DA</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>CONV_DA</td>
<td>0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>NO_DA</td>
<td>0.01</td>
<td>0.25</td>
</tr>
<tr>
<td>TRRL</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>RS</td>
<td>0.04</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fig. 9: Temperature gradient at \(10 \text{ m} \) in the entrainment layer

Spatial Impact and Correlations

Fig. 10: Temperature difference on model level 18, about 2.5 km AGL

Fig. 11: Cross sections of \(T \) and the water vapour mixing ratio difference \(q_i \)

References