

First Assimilation of Rotational Raman Lidar Temperature Data into WRF

Stephan Adam, Andreas Behrendt, Thomas Schwitalla, Eva Hammann and Volker Wulfmeyer

University of Hohenheim, Institute of Physics and Meteorology, 70593 Stuttgart, Germany. Email: stephan_adam@uni-hohenheim.de

Introduction

- Lag of real time observations of the lower tropospheric temperature with sufficient vertical resolution to resolve temperature inversions [1], [2]
- Temperature Rotational Raman Lidar (TRRL) makes use of inelastic backscattered laser radiation to observe the atmospheric temperature continuously
- The boundary layer height and the inversion strength can be determined with TRRL
- The systematic error of the University of Hohenheim (UHOH) TRRL is considerably less than 1K [3], [4]
- The statistical error scales with the spatial and the temporal averaging (Eq. 1)

Impact on the Temperature Profiles

- With averaging times of about 1 min and a spatial resolution of about 100 m, the noon time noise error of the UHOH TRRL is less than 1 K up to 1500 m [5]
- No complex forward operator is necessary, as the temperature is a first level product of the TRRL observations and a prognostic variable in the model

Experimental Setup

- No drift occurs in profiles observed by lidars
- With multiple ways of averaging and the good representativeness of the observations, lidar is very interesting for data assimilation [6], [7]

Fig. 5: Temperature profiles for the four times RS ascents were available

available and over the 9 times TRRL data were assimilated (d) Same as (c), but for the RMSE compared to the TRRL profiles

- 57 levels up to 50 hPa with 15 levels in the lowest 1.5 km
- B-Matrix calculated by the

Lateral boundary conditions from ECMWF analyses/forecasts Time 23.04.13 12:00 UTC Forecast

Rapid Update Cycle with hourly 3DVARs [8]

Tab 2: Overall RMSE between 700 and 3000 m ASL between T_{Model} compared to T_{RS} and TRRL

:		RMSE _{RS,4} / K	RMSE _{TRRL,4} / K	RMSE _{TRRL,9} / K
	ALL_DA	0.8	0.6	0.6
•	CONV_DA	0.7	1.2	1.2
	NO_DA	1.3	1.5	1.5
8	TRRL	1.1		
	RS		1.1	

Boundary Layer Height and Inversion Strength

D Wath Calculated by the		
NMC Method for 62 forecasts	•	TRRL profiles assimilated with the radiosonde operator from ~500 m AGL to
of July 2012		3000 m AGL
Radiation day with well	•	Smoothed with 109 m running average and reduced to one value each 37.5 m
developed convective	•	Hourly averaged TRRL profiles $ ightarrow$ statistical error from 0.01 K to 1.19 K
boundary layer	•	0.7 K chosen as observation error for the whole profiles

Tab. 1: Assmilated observations per 3DVAR.

Data Set	Conventio	Conventional Data TRF							
Туре	AMDAR	AMV	GNSS-ZTD	METAR	PROFL	SYNOP	TEMP	TRRL	
Number of Assimilated	1385 -	1724 -	1050 -	264 -	50 – 57	1183 -	0 – 26	1	
Observations / 3DVAR	1883	3117	1076	339		1361			

• 4 Radiosonde (RS) ascents close to the UHOH TRRL were not assimilated and used additionally for verification

Tab. 3: Statistical analysis of z_i , same subscripting as in Figure 6

Tab. 4: Statistical analysis of $\Gamma_{zi''}$, same subscripting as in Figure 6

RMSE_{trrl,9} /

m

0.30

0.53

0.28

	<u>z,,4</u> / m	z_{i,9} /	RMSE _{RS,4} /	RMSE _{TRRL,4} /	RMSE _{TRRL,9} /			$\overline{\Gamma_{zi,4}}$ / m	$\overline{\Gamma_{zi,9}}$ /	RMSE _{RS,4} /	RMSE _{TRRL,4}
		m	m	m	m				m	m	m
ALL_D	A 1250	1360	110	100	80	ALL_	DA	-0.12	-0.20	0.86	0.44
CONV	D 1250	1310	110	100	120	CON	V_D	-0.26	-0.39	0.86	0.58
Α						Α					
NO_DA	1030	1110	300	320	300	NO_	DA	0.10	-0.11	0.60	0.25
TRRL	1350	1420	80			TRRI		0.30	0.17	0.56	
RS	1320			80		RS		0.49			0.56

Spatial Impact and Correlations

Summary

- RMSE to the TRRL profiles in ALL_DA half as large as in CONV_DA
- Boundary Layer height *z_i* was improved by 50 m in the mean compared to CONV DA
- The mean temperature Gradient Γ_{r_i} in the entrainment zone was improved by 0.19 K (100m)⁻¹ compared to CONV_DA
- Impact of the TRRL data spreads flow dependant in between the 3DVARs in the rapid update cycle
- Correlation with the water vapour mixing ratio q_{ν} was observed in the **B-Matrix**
- A network of TRRL and WVRRL could close the gap of high resolution lower tropospheric thermodynamic observations

Fig. 10: Temperature difference on model level 18, about 2.5 km ASL

References

- [1] Wulfmeyer, V. et al., 2015: *Rev. Geophys.*, **53 (3)**, 819 895
- Illingworth, A. J. et al., 2015: *B. Am. Meteorol. Soc.*, **96 (12)**, 2107 2125
- Wulfmeyer, V. et al., 2016: *J. Atmos. Sci.*, **73 (2)**, 667 692
- Hammann, E. et al., 2015: *Atmos. Chem. Phys.*, **15 (5)**, 2867 2881
- Behrendt, A. et al., 2015: Atmos. Chem. Phys., 15 (10), 5485 5500 [5]
- Wulfmeyer, V. et al., 2006: *Mon. Weather Rev.*, **134 (1)**, 209 230 [6]

[7] Grzeschick, M. et al., 2008: J. Atmos. Ocean. Tech., **25 (8)**, 1237 – 1453 [8] Schwitalla, T. et al., 2014: *Meteorol. Z.*, **23 (1)**, 79 – 102 [9] Adam, S. et al. 2016: Q. J. Roy. Meteor. Soc., First Assimilation of Temperature Lidar Data into an NWP Model: Impact of the Temperature Field, Inversion Strength, and PBL Depth. accepted