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Figure 6: Evaluation of ESSDA
estimates of the pre­melt SSDs

at Bayelva for the 2013 (top),
2014 (middle) and 2015

77.. SSuummmmaarryy
AAcckknnoowwlleeddggeemmeennttss
• Our research has been conducted within the 'SatPerm' project funded by the

Research Council of Norway and is associated with the NordForsk funded
Noric Centre of Excellence 'EmblA'. The background is a LandSat8 falsecolor
image of North­Western Svalbard (taken 28.05.2013, courtesy USGS/NASA).

• Through ESSDA we present a simple and modular approach for snow state
and parameter estimation. By making use of an ensemble of non­linear
snow depletion curves and Gaussian anamorphosis we can move away
from using coarse­scale and biased passive microwave snow depth
retrievals to fine­scale shortwave reflectance based snow cover retrievals
in constraining our snow model. Consquently, our framework offers the
potential for subgrid snow depth distribution estimation at the kilometer
scale useful for permafrost mapping, satellite­era snow reanalyses and
hydrometeorological forecast initialization.
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33.. OObbsseerrvvaattiioonnss • Assimilation: Space­
borne SCF retrievals
from MODIS and (in
the pipeline) LandSat8.

•Validation: Ground­based
SCF retrievals from
images taken by an
automatic camera
system along with
spatialy distributed
snow depth surveys in
the Bayelva catchment.

Figure 3: View of the study site, the Bayelva catchment
(encircled in yellow), from Schetteligfjellt near Ny
Ålesund (79 N), Svalbard, Norway. The photograph was
taken by the presenting author on the 07.05.2016.
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11.. IInnttrroodduuccttiioonn • Snow strongly modulates
the near surface energy
and water balance.

• Still, both model estimates
and satellite retrievals of
snow depth distributions
are highly uncertain.

• To constrain this uncertainty
we are developing a
modular and robust
ensemble­based subgrid
snow data assimilation
framework (ESSDA).

Figure 1: Estimated mean annual ground
temperature map of the North Atlantic permafrost
region (adapted from [3]). Developed using an
equilibrium model using direct insertion of
MODIS­LST and ERA­Interim forcing. Through
ESSDA we wish to build on this approach for
satellite based snow and permafrost mapping.

Figure 4: Example of a synthetic truth (yellow) from which noisy observations (black dots) and
forcing is generated. Panels (top to bottom) show the pre­melt mean snow depth, SCF and CV.
The red and blue lines and corresponding shading show the median and 95% central range of
the unconstrained (free; no DA) and ESSDA (DEnKF) ensemble (N=1000) respectively.

Figure 5: Evaluation of ESSDA
estimates of the pre­melt SSDs at
Bayelva for the (top to bottom)
2008, 2009, 2013 and 2014 snow
seasons. Left panels: The set of
parameters (mean and CV) for
the ensemble of estimated pre­
melt SSDs (reds indicate a
clustering of ensemble members)
along with the distribution
parameters estimated by snow
probe surveys (green diamonds).
Right panels: Histograms of the
pre­melt SSDs corresponding to
the ensemble median parameter
estimates from ESSDA (red bars)
and that sampled by in­situ snow
probe measurements at fixed (but
randomly selected) locations
within the catchment (blue bars).

22.. SSnnooww MMooddeell
C

• Physically based, cheap and
recursive implementation of
the subgrid snow distribubtion
submodel (SSNOWD; see [1]).

• Assumes that pre­melt subgrid
scale snow distributions
(SSDs) are lognormal and that
melt is homogeneous.

• Snow cover fraction (SCF) is
recovered by evaluating the
cumulative distribution at the
current melt depth.

Figure 2: Typical lognormal pre­melt SSD
(black) with a mean depth of 0.3 [meters water
equivalent] and a coefficient of variation (CV) of
0.4. Vertical lines show the melt depths (absissca)
corresponding to 90%, 50% and 10% SCF.

• We conducted a series of synthetic (twin) experiments using a
smooth SCF depeltion as truth. These allowed us to test the
sensitivity of ESSDA to the error model, number of ensemble
members, observation frequency and parameter initialization.

• An ensemble (N=1000)
of SSNOWD
realizations are forced
by perturbed and
downscaled ERA­
Interim reanalysis data
and constrained by
MODIS SCF retrievals
(MOD10A1 and
MYD10A1 v06) using
the DEnKF (see 4.) for
a 1 km² domain in the
Bayelva catchment for
four hydrological years.

• ESSDA employs the deterministic ensemble Kalman filter (DEnKF)
with Gaussian anamorphosis for joint state and parameter
estimation as in [2], but with analytical anamorphosis functions.

• State vector containing the SCF (directly observed) augmented by
the mean and CV of the pre­melt SSD.

• In the anamorphosis we use a logit transform for the SCF and CV
(both double bounded) and a log transform for the pre­melt mean
snow depth (lower bound of 0).

• Both additive inflation and the DEnKF analysis step are carried out
in the transformed space.




