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ABSTRACT

A truly variance-minimizing filter is introduced and its performance is demonstrated with the Korteweg–
DeVries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa.
It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four-
dimensional variational data assimilation (4DVAR)-like methods relying on perfect model dynamics have dif-
ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines
advantages from both methods in that it does provide error estimates while automatically having balanced states
after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the
probability density of the model evolution. When observations are available, the so-called importance resampling
algorithm is applied. From Bayes’s theorem it follows that each ensemble member receives a new weight
dependent on its ‘‘distance’’ to the observations. Because the weights are strongly varying, a resampling of the
ensemble is necessary. This resampling is done such that members with high weights are duplicated according
to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is
not an inverse problem by nature, although it can be formulated that way. Also, it is shown that the posterior
variance can be larger than the prior if the usual Gaussian framework is set aside. However, in the examples
presented here, the entropy of the probability densities is decreasing. The application to the ocean area around
South Africa, governed by strongly nonlinear dynamics, shows that the method is working satisfactorily. The
strong and weak points of the method are discussed and possible improvements are proposed.

1. Introduction

In areas of the World Ocean, where even state-of-the-
art numerical models still have serious shortcomings,
data assimilation can be of use. Smoothers, in which
observations of the system are not only used for future
evolution but also back in time, can be especially useful
for pointing to missing model physics, problematic forc-
ing, or wrong boundary conditions.

Another area where data assimilation is important is
forecasting. By providing an initial condition as close
as possible to observations, while still allowing infor-
mation from model dynamics, more accurate predictions
can be made. In this case, it does not make sense to use
a smoother because it contains no extra information
compared to a filter, even for nonlinear models (see
Evensen and van Leeuwen 2000).

The problems we are facing today regarding data as-
similation are, in large part, attributable to poorly known
model behavior. We all agree that all observations of a
system should be accompanied by an estimate of how
accurate the measurement is. For numerical models, this
is not common practice. Still, numerous studies appear
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in literature in which one single (climate) model run is
analyzed is some detail followed by exclamations on
the behavior of the model in general, or even on the
real world! Obviously, one needs to know the model
sensitivity to various parameters and parameterizations
before these kinds of statements can be made.

While for linear problems a Kalman filter will provide
the variance-minimizing solution, for nonlinear prob-
lems this is not the case (see, e.g., Jazwinski 1970). The
so-called extended Kalman filter designed for nonlinear
problems can only handle weakly nonlinear model be-
havior because the assumption is made that the error
evolution evolves according to the tangent linear model
evolution. Furthermore, it is assumed that the central
forecast, and so the model evolution, assuming no errors
in the dynamical equations, is the optimal state. The
advantage of this assumption is that the optimal state
evolves independently from the rest of the probability
density of the model, so that the covariances are only
needed at analysis times. This has led to several methods
to approximate the error covariances at analysis times,
avoiding the time-consuming propagation of the co-
variance fields. Obviously, when the model is strongly
nonlinear, problems regarding the optimality of the so-
lution arise.

The problems are, in fact, threefold. First, the evo-
lution of the error covariances is not according to the
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tangent linear model evolution. Several ensemble meth-
ods based on either a root-mean-square approximation
of the error covariance (e.g., Verlaan and Heemink
1997) or a Monte Carlo approach solve this problem.
The second problem is that the central forecast is not
optimal between analyses for a nonlinear model evo-
lution. Methods like the ensemble Kalman filter (EnKF;
Evensen 1994; see also Burgers et al. 1998) address this
problem by propagating an ensemble of model states
forward in time and taking (correctly) the variance-min-
imizing state as the mean of the ensemble. Interesting
variants of the EnKF are presented by Heemink et al.
(2001), who show that a combination of a square root
filter and the EnKF is superior to either variant sepa-
rately, and by Anderson (2001), who developed an en-
semble adjustment Kalman filter in which no pertur-
bation of observations is needed. Finally, the Kalman
update itself is not variance minimizing (see, e.g., Ja-
zwinski 1970). In this paper, a possible solution to this
last problem is presented, using ensemble integrations
to solve the first two.

The method presented here remains rather close to
Bayes equation, which is at the heart of the data assim-
ilation problem. It is shown that a frequency (or particle)
representation of the probability density of the model
evolution leads to a weighting of the ensemble members
(or particles) related to their distance to the observa-
tions. Van Leeuwen and Evensen (1996) tried to apply
this method with a smoother over a 100-day interval in
a quasigeostrophic ocean model, but it failed to work.
The failure is due to the fact that only very few ensemble
members have a large enough weight over the 100 days,
so the effective ensemble size becomes too small. How-
ever, when the weighted probability density is resampled
every now and then, the idea can be made to work for
quite large state spaces, as is shown in this paper. Several
similar methods have been proposed for these kinds of
problems (e.g., Anderson and Anderson 1999; Miller et
al. 1999; Pham 2001), but they have only been tested
for low-dimensional problems like the Lorenz63 (Lo-
renz 1963) model (although the application to large-
scale models is discussed in these papers).

In the next section, the new method is outlined. Sec-
tion 3 discusses an application to a simple nonlinear
model that goes beyond the Lorenz equation, while still
being tractable. This application on the Korteweg–
DeVries (KdV) equation is compared to results obtained
with the ensemble Kalman filter. Section 4 discusses a
real application to the ocean area around South Africa,
modeled with a five-layer quasigeostrophic model. Sec-
tion 5 summarizes the paper and discusses the potential
of the method for even larger-scale applications.

2. A variance-minimizing filter

In this section, a truly variance-minimizing filter and
smoother are derived using Bayes’s theorem. As the
name suggests, a variance-minimal estimate is that es-

timate with minimal variance. Since the most commonly
used way to characterize the accuracy of an estimate is
to look at its variance, and because it is a sensible mea-
sure of the spread of a probability density, it makes sense
to try to find this estimate. At the heart of nonlinear
data assimilation lies the notion of combining proba-
bility densities of model and observations. By express-
ing the problem in terms of probability density func-
tions, a Bayesian estimation problem can be formulated.
In Bayesian statistics, the unknown model evolution c
is viewed as the value of a random variable Thec.
density f m(c) of c is obtained from the model somehow
and is called the prior probability density. Using the
definition of a conditional probability density we can
derive the new, or posterior, probability density of c
given the observations d:

f (d | c) f (c)d mf (c | d) 5 . (1)m

f (d | c) f (c) dcE d m

The first factor in the numerator, the density f d(d | c),
is the probability density of the observations, given that
the model random variable 5 c. The second factorc
is the a priori model density f m(c). The denominator is
the probability density of the observations, written as a
marginal density of the joint density of model and ob-
servations. Obviously, this is just a normalization term
[see, e.g., van Leeuwen and Evensen (1996) for details].

What first comes to mind when considering this equa-
tion is that data assimilation is not an inverse problem
from the start. It can be put in that form, but defining
it in terms of combining probability densities is more
natural. Indeed, this has direct bearing on the general
idea of data assimilation: we try to combine information
from observations with dynamical information in the
form of partial differential equations of the underlying
physics. It can be put into an inverse problem for prac-
tical purposes, but there is no need to do so in principle.
As we will see, the method presented here will not be
turned into an inverse problem, so no matrices have to
be inverted.

As is well known, the variance-minimizing model
evolution is equal to the mean of the posterior proba-
bility density:

c 5 c f (c | d) dc. (2)E m

A frequency (or particle) interpretation of this equation
leads to

N

c 5 c f (c | d), (3)O i m i
i51

which can be rewritten as
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N

c f (d | c )O i m i
i51

c 5 . (4)N

f (d | c )O m i
i51

The meaning of this equation is that each ensemble
member (or particle) is weighted by its ‘‘distance’’ to
the observations, with the weights given by

f (d | c )d iw 5 . (5)i N

f (d | c )O d i
i51

The ‘‘distance’’ is found from the probability density
of the observations. If the observational errors are
Gaussian distributed, and, for simplicity, uncorrelated
with standard deviations s, the weights are found as

21 (d 2 Hc )iw 5 exp 2 , (6)i 2[ ]A 2s

in which the normalization constant A is given by

2(d 2 Hc )iA 5 exp 2 , (7)P 2[ ]2s

and in which H is the measurement operator, which can
be strongly nonlinear.

From the above, it becomes clear that all operations
that have to be performed to obtain the variance-min-
imizing solution are direct; that is, no inversions are
present. One of the advantages is that the measurement
operator can be extremely difficult to linearize without
damaging the calculation: we just take it as it comes.
Another is that no matrices have to be inverted, either
directly or iteratively. It is also noted that higher-order
moments are extremely easy to obtain as soon as we
have the ensemble. For instance, any moment g(c) is
obtained as

N

g(c) 5 w g(c ), (8)O i i
i51

with the weights wi given above. Again, no inversions
needed.

Now, as mentioned in the introduction, van Leeuwen
and Evensen (1996) have tried to apply these ideas in
a two-layer quasigeostrophic model of the ocean around
South Africa. They fed the model with gridded altimeter
observations every 10 days but soon found that the rel-
ative weights varied too wildly. Only a few members
had relatively large weights, while the rest had such low
weights that it made no contribution in the posterior
density to the first two moments. It was estimated that
at least one million (!) ensemble members were needed
to obtain statistically significant results in their appli-
cation. A possible solution has been in fact known for
quite a long time (Rubin 1988; Gordon et al. 1993):
resample the posterior density after some time to create

a new ensemble in which all ensemble members have
equal weight again. Clearly, the success of such a meth-
od depends on the density of the observations, but it is
a promising candidate for the real solution. This resam-
pling can be done in a variety of ways, and the results
from importance resampling are discussed here. For an
overview, the reader is referred to Doucet et al. (2001).

The new method versus importance resampling

The basic idea of importance resampling is extremely
simple (see Rubin 1988). First, calculate the weight of
each ensemble member. This collection of weights
forms a new density. In the purest form of importance
resampling, a sequence of numbers is sampled randomly
from that density, in total, the amount of ensemble mem-
bers N. Clearly, more numbers will be drawn at high
weights than at low weights. The amount of numbers
drawn at a certain weight is equal to the number of
identical copies that are made of that ensemble member.
So, if, for example, weight w i is chosen four times, four
identical copies of ensemble member ci are made. On
the other hand, if a weight is so low that it is not chosen
at all, no copies of that ensemble member remain. In
this way, a new ensemble, in which all ensemble mem-
bers have equal weight again, is created. It is resampled
from the density defined by the weights, and therefore
by the relative closeness of the observations to the mem-
bers. The procedure is depicted in Fig. 1.

In certain variants of importance resampling, the cop-
ies of an ensemble member are not identical, but some
‘‘jitter’’ is applied to obtain a little more spread in the
ensemble. For instance, Anderson and Anderson (1999)
use the kernel method (Silverman 1986), in which a
Gaussian is created around each chosen ensemble mem-
ber, and, instead of identical copies, new ensemble mem-
bers are drawn from this Gaussian. The covariance
structure of this Gaussian is, of course, problematic. In
the standard kernel method, it is taken as a factor times
the covariance of the whole ensemble, but the accuracy
of this procedure is questionable. There is no a priori
reason why the local structure of the probability density
should resemble the global structure. Nevertheless, in-
teresting results are obtained with several variants of
the Lorenz63 model. In the application described here,
no jitter is applied because the errors in the model dy-
namics are so large that identical copies will spread
relatively fast. These dynamical model errors are added
as random forcings in the model equations, so the model
integrations are not deterministic.

The procedure that I followed in this paper closely
resembles importance resampling, with the following
modification. Instead of choosing randomly from the
distribution determined by the weights, members with
large weights are chosen directly from the distribution
in the following way: First, this density is multiplied
by the total amount of ensemble members. For each so-
obtained weight that is larger than 1, the integer part of
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FIG. 1. The standard SIRF: (top) the posterior density (the weight
of the individual ensemble members) before resampling and (bottom)
the resampled ensemble, assuming an ensemble size of 100. The
integer value denotes the number of copies of that ensemble member.

FIG. 2. The SIRF variant used herein: (top) the posterior density
before resampling, multiplied by the ensemble size (100), and (bot-
tom) the modified posterior after subtraction of the integer values of
the top panel. The rest of the ensemble is drawn from this density.

that weight determines the number of identical copies
of the corresponding ensemble member. So, if the orig-
inal weight of member i was wi 5 0.115, with an en-
semble size of 100, the new weight w̃i 5 100 3 0.115
5 11.5. This results in 11 copies of the ensemble mem-
ber, while w̃ i 5 0.5 remains. This procedure is followed
for all weights. Finally, all remaining parts w̃i form a
new density from which the rest of the ensemble is
drawn, according to the rules of stochastic importance
resampling described above. The sampling method is
demonstrated in Fig. 2.

The reason for the deviation from the basic impor-
tance resampling is as follows: Statistically, the basic
rule is preferable if the ensemble is large enough. How-
ever, computational arguments lead to as small ensemble
sizes as possible. In that case, we are more strongly
interested in the members with high weights, and the
above method minimizes the possibility that too many
members are drawn with low weights. In this way, I try
to maximize the amount of information present in the
weighted prior ensemble on physical balances in the new
ensemble. So, interestingly, while the posterior density
has been sampled rather badly because of the low en-
semble size, I keep to this sample as close as possible
to avoid ensemble members that are useless from a sta-

tistical point of view. A question that comes to mind is
why the second stage of the algorithm, in which the
sampling is stochastic again, is not also done determin-
istically. The reason is that the stochastic sampling is
so much simpler to implement. Deterministic sampling
could be used again along the lines described above,
but then a new density would arise. Also, this density
could be sampled deterministically, but, again, a new
density would arise, and so on, until the sum of the
weights is smaller than 1. To avoid this process of de-
terministic sampling again and again, the stochastic
method is used in the second stage.

From now on, this method is referred to as sequential
importance resampling (SIR) to avoid further confusion
in the data assimilation literature. However, the reader
should take the differences with the standard method of
that name into account.

A smoother version of the method can be obtained
by using the weights at all times in the smoother time
interval. The potential problem that only a few ensemble
members are retained after a few filter steps, so that the
smoother is based on a much smaller ensemble, needs
further investigation and is postponed to a future paper.

A final comment on the particle nature of the filter
and the resampling is that, because of these two ap-
proximations, the filter is not exactly variance mini-
mizing: only the mean of the continuous probability
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FIG. 3. True evolution of the soliton at t 5 0 (solid line), 10 (dotted
line), and 20 (dashed line). The measurements are taken around the
max value (see text for details). Note the constant shape of the so-
lition. The horizontal axis denotes the grid points, with Dx 5 0.5.

FIG. 4. Mean of the prior ensemble at t 5 10 (dotted line), the mean
of EnKF analysis (dashed line), and the mean of the SIRF analysis
(solid line). The observations are indicated by stars. Although the EnKF
solution is close to the observations, it is not optimal (variance min-
imizing). The SIRF solution uses the whole prior density and not only
the first two moments. It is variance minimizing, so the model dynamics
are taken into account consistently. Note the negative tail in the EnKF
solution, leading to a breakup of the soliton later on.

density has that privilege. However, because the con-
tinuous density cannot be calculated or stored in prac-
tice, the particle filter is as close as we can get. This
closes the description of the data assimilation method
used in this paper. In the next section, the filter version
is applied to a simple tractable problem to compare its
performance with standard methods like the ensemble
Kalman filter.

3. A simple test case: The KdV equation

In this section, the new method is applied to the Kor-
teweg–DeVries equation to study its behavior in non-
linear systems. For comparison, the ensemble Kalman
filter is applied to the same problem. In this way, the
difference between the conventional Kalman update and
a variance-minimizing solution can be investigated.

The KdV equation describes the nonlinear evolution
of a field u subject to advection and dispersion:

u 1 6uu 1 u 5 0.t x xxx (9)

[In fact, several forms of the KdV equation exist (see,
e.g., Drazin and Johnson 1989).] Shape-conserving so-
lutions called solitons are allowed by a balance between
the steepening of the waveform due to nonlinear ad-
vection and the dispersion from the third spatial deriv-
ative. We start by a field of the form:

0.5a
u(x, 0) 5 , (10)

2{cosh[Ïa(x 2 x )]}0

in which x0 is the position of the maximum of the wave-
form, and 0.5a is its amplitude (see Fig. 3). The KdV
equation will move the waveform toward positive x val-
ues with a speed a, while conserving its shape. Impor-
tant for the following is that the soliton is stable to small
perturbations (see, e.g., Drazin and Johnson 1989).

Several experiments have been performed with the
new filter and the ensemble Kalman filter. Presented in
detail here is one experiment that highlights the differ-
ences between the two methods. We first form a true

solution by integrating this form with a 5 1 over a
domain of length 50, with periodic boundary conditions,
x0 5 20 and Dx 5 0.5. The time-stepping scheme is
leapfrog, with an Euler step every 67 time steps to sup-
press the numerical mode. The time step is Dt 5 0.1.

This solution is measured six times, on t 5 10, at x
5 37, x 5 40, and x 5 43, and on t 5 20, at x 5 57,
x 5 60, and x 5 63. To these pseudo-observations,
random Gaussian noise with zero mean and standard
deviation 0.05 was added. Note that the observations
are taken around the peak values of the waveform.

We try to recover this solution with the sequential
importance resampling filter (SIRF) and with the en-
semble Kalman filter (see Burgers et al. 1998) for com-
parison. To this end, an ensemble was created with the
amplitudes of the ensemble members drawn from a
Gaussian with zero mean and standard deviation 0.5. To
mimic errors in model dynamics, random numbers are
drawn from a Gaussian distribution with zero mean and
standard deviation 0.001. These numbers are added to
the solution at each time step. The ensemble size was
250, but the results converged at N 5 150. This ensem-
ble was integrated forward in time, and data were added
at t 5 10 and t 5 20, as explained above. Figure 4
gives the mean of the forecasting ensemble at t 5 10.
The decrease of the amplitude can be attributed to the
spread in amplitudes a, leading to an ensemble of so-
litonlike waves with different propagation speed.

In the same figure, the mean of the ensemble after
analysis at t 5 10 is given for the ensemble Kalman
filter and for the sequential importance resampling filter.
The measurements are indicated by stars. The first thing
that strikes the eye is that the EnKF solution comes
much closer to the observations than the SIRF. However,
the EnKF solution is not variance minimizing and is,
in fact, too close to the observations. The EnKF assumes
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FIG. 5. The prior (dashed line), posterior (solid line), and obser-
vational (dotted line) probability densities on t 5 10, x 5 40 (the
top of the soliton). The prior is not Gaussian, and neither is the
posterior density, because of the nonnegative solution. The large var-
iance in the prior is the reason that the EnKF solution becomes too
close to the observations.

FIG. 6. Prior (dashed line) and posterior (solid line) variances on
t 5 10. The posterior variance is lower everywhere, but not at the
measurement point at x 5 40. Clearly, the variance is not a good
measure of the accuracy in this case.

FIG. 7. Mean of the EnKF (dotted line) and SIRF (solid line) pos-
terior solutions at t 5 20. The stars denote the observations. The
SIRF solution closely resembles the truth, but the EnKF solution
shows a complete breakup of the soliton.

that the prior probability density of the model is Gauss-
ian, but that is not the case. In Fig. 5, the prior, posterior,
and observational density are given at the peak of the
true soliton, on t 5 10, at x 5 40. The densities are
created using the frequency interpretation on prespec-
ified intervals. Varying the intervals within reasonable
bands showed that the visible features are robust. Clear-
ly, the prior is non-Gaussian because the solitons are
always nonnegative. Several ensemble members moved
too slow or too fast to have a significant value for the
solution at x 5 40. The variance of the prior is 0.3,
which is more than a factor 10 larger than that of the
observations. So, indeed, the EnKF posterior solution,
being a weighted mean between the prior ensemble
mean and the observations, has to be very close to the
observation. If the prior is not Gaussian distributed, as
is the case here, the posterior is not only determined by
the mean and the variance of the prior and the obser-
vations but by the whole density. The variance-mini-
mizing solution is the mean of the posterior density,
which gives much more credit to the prior model esti-
mate. The SIRF does give exactly this estimate. (Note
that it has converged for 250 members.) So, the fact
that the model is drawn close to the observations in the
EnKF does not automatically mean that the EnKF anal-
ysis is good!

Variance estimates for a truly variance-minimizing
solution also show unfamiliar behavior. Figure 6 shows
the prior and posterior variance estimates for the SIRF
at t 5 10. Interestingly, the posterior variance is higher
than the prior variance at the measurement point x 5
40. So, in a conventional way of thinking, the uncer-
tainty in the estimate at that point is increased because
of the measurement. A more accurate inspection of the
full prior and posterior densities shows that the uncer-
tainty has decreased, but the second moment of the den-
sity does not show it. A way to quantify this uncertainty

is by introducing the so-called entropy of the system as
(see Shannon 1948)

M

H 5 2 p logp , (11)O k k
k51

in which M is the number of bins with a probability
density unequal to zero. One can easily show that the
entropy of a Gaussian-distributed variable is propor-
tional to its variance. For probability densities other than
the Gaussian, this is not necessarily true. For instance,
for bimodal densities the variance loses its meaning. In
that case, the entropy is a more sensible estimate, as
Shannon (1998) showed. In our case, we find that the
entropy of the prior density is H 5 1.1587, and that of
the posterior density is H 5 0.7286. So, the entropy has
decreased. We will come back to this in the next section.

We now turn to the analysis at t 5 20. Figure 7 shows
the mean states of the EnKF and SIRF ensembles after
analysis. The SIRF is very close to the observations this
time. This has to do with the correct update of the en-
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FIG. 8. Sea surface height field (m2 s21) of the ocean area around
South Africa (308–458S, 108–358E), obtained from a snapshot of the
ocean model. Note the Agulhas Current along the east coast of Africa,
the shedding of Agulhas rings at the southern tip of the continent,
and the strong meanders in the Agulhas return current flowing back
east from the shedding area.

semble at t 5 10, leading to a relatively large part of
the ensemble rather close to the truth. The model error
increases the spread in this ensemble a bit, so that the
largest variance (about 0.045) is around x 5 60 at t 5
20. This variance is so large, and the ensemble is so
close to the observations, that an almost perfect match
is possible. The EnKF analysis looks rather strange. In
fact, the program crashes some time after the update.
Several reasons for this behavior can be found. First,
Fig. 4 shows that a negative tail exists in the analysis
of the EnKF. However, as is well known, negative values
do give rise to fast wave motion toward the left in the
KdV equation. The reason for this behavior is that the
nonlinear advection and the dispersion enhance each
other instead of balancing each other. This is indeed
what happens with the updated ensemble members.
They have negative parts, and also the perturbation due
to the update is too large, so that the soliton falls apart
rapidly. So, the mean is not evolving as a soliton right-
ward anymore, but it will break up. If one recalls that
the figure shows the mean, one can imagine what the
individual members must look like at analysis time, and
how their subsequent evolution will be. The negative
values arise because each new EnKF ensemble member
is a linear combination of the old ones, without taking
into consideration that no negative values exist, so with-
out realizing that the prior is not a Gaussian. The re-
sulting overfitting at the measurements leads to negative
values farther on, because of the large gain. Another
reason for the wild character of the update is that the
ensemble is way off. The prior variance is extremely
high, leading again to a large gain all over the domain,
resulting in the problems mentioned above.

As mentioned above, several experiments have been
performed with the KdV equation, and, depending on
the system parameters, the above differences between
the EnKF and the SIRF are more or less pronounced.
Since little new can be learned from them, they are not
discussed.

A serious problem is the issue of ensemble collapse.
When the weights are such that the relative weight of
one member is much larger than that of all the others,
only that member is present in the determination of the
moments of the posterior density. So, a mean will be
produced, equal to that member, but the variance is close
to zero. The filter thinks it is doing perfect, but that is
not necessarily the case. The resampling will produce
N (the size of the whole ensemble) identical copies of
that member, consistent with the weighted ensemble,
but again (of course) having the same problem. (Gen-
erally, the filter will diverge from the true evolution, so
ensemble collapse is also termed filter divergence. Since
divergence is one of the possible consequences of the
collapse, we use the term ensemble collapse throughout
this paper.) The experiments showed that the SIRF is
more sensitive to ensemble collapse than the EnKF (with
perturbed observations). On the other hand, when the
EnKF collapses, it will be extremely difficult to get it

spreading again because the variance in the ensemble
remains very low. The observations are unable to pull
the ensemble to the correct state because their variance
will generally be much larger. For the SIRF, the situation
is different. The variance in the ensemble is not directly
related to the weighting with the observations via the
Kalman gain; instead, each member is weighted indi-
vidually. The best member in the SIRF will by dupli-
cated, and the new ensemble will spread again during
the integration. The probability that more members are
close to the next observation set increases strongly this
way. As a result, the SIRF can be expected to be pulled
more easily on the correct track than the EnKF. Crucial
in the collapse problem is the choice of the probability
density for the observations. The next section, which
deals with a real application, elaborates further on this.

It should be mentioned that modifications to the stan-
dard EnKF can be used to overcome the problems pre-
sented here. For instance, one could put all negative
values after analysis to zero, with or without compen-
sation for the ‘‘mass loss.’’ Also, one could perform a
local analysis to avoid the problems. This is almost
always used in large-scale problems to prevent spurious
correlations from destroying the solution. So, several
relatively simple fixes are possible to make the EnKF
work in practice. The fundamental point is, however,
that the EnKF is not variance minimizing. The new
method proposed here does not have this kind of prob-
lem by construction.

4. A real application

In this section, the new method is applied to a large-
scale problem to study its behavior in such a setting.
We study the ocean area around South Africa (Fig. 8).
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The Agulhas Current runs along the east coast of South
Africa southward and retroflects just after leaving the
continent at its most southern tip, back into the Indian
Ocean. At the retroflection point, large Agulhas rings
are shed, moving into the South Atlantic [see de Ruijter
et al. (1999a) for a review]. The area is an ideal test
bed for data assimilation methods because of the highly
nonlinear dynamics and the availability of high quality
satellite altimeter measurements of the height of the sea
surface. Since this height is directly related to the pres-
sure, it is an important dynamical constraint on the flow.

The area is modeled by a five-layer quasigeostrophic
ocean model with a horizontal resolution of 10 km. The
first baroclinic Rossby deformation radius is about 35
km in this area, so the model is so-called eddy permit-
ting. This resulted in 251 3 140 grid points in the hor-
izontal. The layer depths are 300, 300, 400, 100, and
3000 m, respectively, with densities of 1026, 1026.9,
1027.25, 1027.65, and 1027.75 kg m23. The time step-
ping was done with leapfrog, with an Euler step every
67th step to suppress the computational mode. A time
step of 1 h was chosen, close to the Courant–Friedrichs–
Lewy (CFL) limit, for optimal accuracy. Small-scale
noise was reduced by a Shapiro filter of order 8. The
quasigeostrophic dynamics do not allow an accurate de-
scription of coastal processes, so the continental shelf
was assumed to be part of the land. From satellite in-
frared observations, the Agulhas flows along the con-
tinental shelf break, so that this assumption is probably
not too severe. Boundary conditions are such that fea-
tures are leaving the domain with twice the speed of
the fastest wave mode. Only the inflow of the Agulhas
Current at the eastern side of South Africa was pre-
scribed. Because this inflow is supercritical for all bar-
oclinic (Kelvin) waves, this last condition is well posed
for those waves. Problems with barotropic waves did
not arise. (Note that the values at the boundaries are
part of the data assimilation problem.) The model is
able to produce realistic ring-shedding events and gen-
eral mesoscale motion in the area, as compared to sat-
ellite observations and in situ ship measurements.

a. Statistics

The initial streamfunction error (uncertainty) was tak-
en space independent, with values of 4000, 3000, 2000,
1000, and 1000 m2 s21 for the layer models. Every day,
a random error of 0.05 times these values was added to
describe the model error. The spatial correlation of the
errors was Gaussian with a decorrelation length of twice
the Rossby radius of deformation. The value of the ini-
tial errors was rather low because the model was ini-
tialized from an interpolated altimeter sea surface height
field. The time-mean field is always problematic because
it is not well known. We used a field similar to that used
by van Leeuwen (2001), but now interpolated over five
layers. In this application, we added the same time-mean
field to all observations, leading to consistency between

initial conditions and observations, but the real world
might be inconsistent with this mean field. This will be
visible in the data assimilation system by a bias in model
dynamics (apart from the bias due to quasigeostrophy).
However, as explained by van Leeuwen (2001), a bias
does not prevent us from using the data assimilation
equations, because they are still valid.

The state space, consisting of the five streamfunction
fields for the five layers, has a dimension of about 2 3
105. The ensemble size was 495. Extending this to 1024
did not alter the results significantly; that is, the change
in the ensemble means was much less than the ensemble
standard deviations, and the variance plots were iden-
tical visually.

b. Observations

The observations were satellite altimeter height data
from the TOPEX/Poseidon (T/P) and European Remote
Sensing (ERS)-2 satellites. These two satellites cover
the model area with tracks that are about 150 (T/P) and
about 70 (ERS-2) km apart. While T/P has a repeat orbit
of 10 days, ERS-2 has a repeat orbit of 35 days. The
along-track resolution is 7 km.

A problem with satellite altimeter data is that the
time-mean signal contains information about both the
ocean circulation and the geoid. Since the geoid is not
well known at the length scales of interest, only the
time-varying part of the altimeter signal can be used.
The time-mean field has to come from other sources.
Here, we used a field derived from in situ measurements,
as is also used in van Leeuwen (1999, 2001). Unfor-
tunately, the accuracy of this field is not well known.
[One could try to estimate the time-mean oceanic field
by using it as the unknown in a data assimilation ex-
periment, because the time-mean and the time-varying
part of the signal are dynamically coupled. This is done
by van Leeuwen (1999), but, although the results are
encouraging, the quality of the field is still questionable.
An independent estimate would definitely be preferable,
and we hope that the Global Ocean Circulation Exper-
iment (GOCE), which will determine the shape of the
geoid, will help us out on this problem.]

For the initial field, an interpolated image was pro-
duced from the observations over a time period of 35
days, representative of the oceanic situation of 1 January
2000. The observations that are used in the data assim-
ilation experiment are collected over 1 day, and the
resulting batches are offered to the model. So, each
batch has only a partial coverage of the domain, a few
tracks, which differs from day to day. Every fifth ob-
servation was used in the data assimilation experiment,
while every fifth observation with an offset of 2 was
used as independent data to check the results from the
assimilation experiment.

The observational error was specified as 5000 m2 s21,
which corresponds to about 4 cm in sea surface height.
This value is probably a bit too high for T/P data (2
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FIG. 9. Probability density of upper-layer streamfunction at a point
in the retroflection area. The density is non-Gaussian, so a Kalman
filter cannot be used.

cm) but a little too low for the ERS-2 data (5 cm). The
universal value was chosen here for simplicity, and be-
cause both data sources suffer from a not-well-defined
time-mean sea surface topography. Recall that the pur-
pose here is to demonstrate the abilities of the data
assimilation system not the best reproduction of the oce-
anic state.

The shape of the probability density of the altimeter
observations is a difficult matter. Because of the weight-
ing procedure, the SIRF is very sensitive to the tails of
that density. In general, we know little of those tails. It
has been suggested, however, that the tails of a Gaussian
are too small: the square in the exponent cuts off large
deviations from the observations very drastically. So,
outliers, meaning bad measurements here, may have a
tremendous effect on the behavior of the filter. Indeed,
the first experiments with Gaussian densities for the
observations led to ensemble collapse directly at the first
analysis time. Even increasing the observational errors
by a factor of 10 did not help much.

This formed the motivation to look for densities with
larger tails. The Lorentz density is used in this paper,
but better alternatives can probably be found quite eas-
ily. The density is given by

1
f (d | c) 5 (12)d 2[d 2 H(c)]

1 1
2s

for uncorrelated observational errors. An advantage of
this density is that it has a shape very similar to a Gauss-
ian near the peak (symmetric and quadratic), but it is
much broader away from the peak. The observational
error is taken equal to s, half the full width at half
maximum, so equal to a Gaussian in this respect. The
similarity with the Gaussian close to the peak is an
important reason to use this density, although other
choices might be just as good. A disadvantage is that
the density has infinity variance, but that is only a the-
oretical problem not a practical one in this case.

c. Implementation

The SIRF was implemented on an Origin 2000 par-
allel computer using 15 processors. The distribution
over the processors was done using the OpenMP multi
processing programming system, in which each pro-
cessor integrated 33 ensemble members. The analysis
was done serially, but because no inversions had to be
performed the code remained extremely parallel. The
speedup was close to 100%, while the f90 code is ex-
tremely simple. The straightforward observational da-
taset required no special treatment. However, for a more
involved assimilation parallel input/output (IO) seems
to be in order. When more processors are present a
message passing interface (MPI) version of the code is
favorable because of communication problems in
OpenMP with a large number of threads, but also be-

cause the MPI f90 code remains simple, with little extra
coding compared to a serial version of the program.

d. Results

The carefully chosen error covariances lead to a sen-
sible solution. First, the statistics of the results are dis-
cussed, including a comparison with independent ob-
servations; then, a short physical discussion of the ob-
tained results is given.

1) STATISTICS

First, we have to make sure that a truly variance-
minimizing method is needed, instead of a Kalman fil-
ter–like approach. Figure 9 shows the prior density of
the upper-layer streamfunction at a point in the retro-
flection area. The densities are created using the fre-
quency interpretation on prespecified intervals. Varying
the intervals within reasonable bands showed that the
three visible peaks are robust. Clearly, this does not
represent a Gaussian, as several statistical tests prove
(not shown). So, a filter that goes beyond the Gaussian
assumption, and so beyond Kalman filters, is needed for
this problem.

Figure 10 shows the evolution of the total rms error
of the ensemble for each model layer when the SIRF is
applied. The rms is defined here as the rms deviation
from the ensemble mean, since the truth is not known.
The original large uncertainty is reduced strongly at the
first measurement time, to stay close to this level for
the rest of the assimilation period. Since the method
weights each ensemble member as a whole, the error
evolution in the lower layers is just a constant fraction
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FIG. 10. Layer-integrated rms errors vs time. The values have been
normalized by the error of the upper layer at day 1. All layers show
a similar evolution because ensemble members are weighted as a
whole. The observations are able to constrain the model evolution.
Note that the variance occasionally goes up at analysis times (see
text). The dashed line shows the upper-layer rms error when no ob-
servations are assimilated after day 3.

of that in the upper layer (represented by the top curve
in Fig. 10). The dashed line that starts at day 4 shows
the unconstrained evolution of the rms error of the upper
layer when no observations are assimilated after day 3.
It shows that the error growth is indeed more or less
exponential, as one would expect from such a nonlinear
model.

A feature that first attracts the eye is that the error
occasionally goes up at analysis time. For Kalman filter–
like methods, in which the assumption is made that mod-
el and observational prior densities are Gaussian, this
would point to serious problems. The reason is that,
when combining two Gaussian-distributed variables, the
variance of the posterior density always has to be lower
than either of the prior variances, as can easily be shown.
For variables that are not Gaussian distributed, this does
not have to be the case.

This fact, already demonstrated in the previous sec-
tion, is illustrated here with a simple example. Consider
two variables on the domain [0, 1], with one having a
density that is 4/3 in [0, 0.5] and 2/3 in the rest of the
interval, and the other having a density that is 2/3 in
the first half and 4/3 in the second half of the interval.
Obviously, the posterior density is 1 along the complete
interval, and its variance is larger than that of either of
the prior densities. In fact, this example is a bit de-
pressing in the sense that also the entropy grows. So,
the information in the observation is counteracting that
in the model and shows that we should be less certain
than the model predicts.

In the present case with the quasigeostrophic model,
the entropy as measure of our uncertainty is calculated
at the point corresponding to the probability density in
Fig. 9. The entropy of the prior probability density is
H 5 0.875, while that of the posterior is H 5 0.731.
So, indeed, the entropy has reduced here too. As an
informal statement, one might say that when the model

probability density is multimodal, and the observations
favor only a few modes, the entropy, and therefore the
uncertainty, will decrease, but the variance can increase
because of the shifting mean value. No doubt more can
be said on this, but that is beyond the scope of the
present paper.

Another interesting feature is the fast initial drop of
the error to a relatively low value, and the nearly con-
stant value afterward. Kalman filter–like methods tend
to show a more gradual decrease of the error. The reason
must be that only a few ensemble members are close
to the observations initially, so that only those members
get a nonzero relative weight. The spread in those few
members is relatively low. The resampling step then
draws the complete ensemble to that part of state space.

Figure 11 shows the upper-layer rms error fields de-
termined from the ensemble for t 5 0, 10, 20, 30 days.
The initial error is taken as 4000 m2 s21, corresponding
to about 3 cm. The errors drop to values of about 1000
m2 s21, with occasional values of over 3000 m2 s21 after
10 days. On day 30, the error field has become more
smooth, settling around 1500 m2 s21, or close to 1 cm.
This seems unrealistically low, given the observational
error of close to 4 cm. To investigate this further, the
SIRF results were compared to independent observa-
tions.

In Fig. 12, the variance between the unused altimeter
observations and the mean of the ensemble are com-
pared to the variance of the ensemble at those obser-
vation points. The comparison shows that the ensemble
spread is indeed what it should be. We thus can conclude
that the SIRF is doing quite a good job.

2) PHYSICAL RESULTS

In Fig. 13, the mean of the analyzed ensemble is given
for t 5 0, 10, 20, 30 days. Because the errors are rather
low, less than 10% in most of the area, the features that
are visible have to be dynamically significant. A first
thing that strikes the eye is the dipolar structure in the
retroflection area. The anticyclonic anomalies seem to
wrap around the cyclonic feature. A ring is pinched off
at day 20 but is recaptured at day 30. Meanwhile, the
dipolar structure is moving westward with a speed of
about 10 km day21, or close to 12 cm s21. Farther west,
at 38.58S, 12.58E, an Agulhas ring is present at day 0.
At day 30, its center has moved farther west, with a
speed of close to 3 cm s21. This is within the obser-
vational range from a large collection of these rings (see,
e.g., Schouten et al. 2000). It might be interacting with
a similar ring farther southeast, but that is not conclusive
from the figure. Also interesting is the cyclonic feature
between the retroflection and the Agulhas ring. It seems
to vanish at day 20 and to disappear completely at day
30. This cyclone might be the result of a spinning up
of the water mass due to the presence of anticyclonic
features at its eastern, southern, and western sides. Its
fast disappearance might point to the fact that the cy-
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FIG. 11. Root-mean-square error fields (m2 s21) for the upper layer for days 0–30. The errors are reduced more or
less uniformly because the ensemble members are weighted as a whole.

FIG. 12. Comparison of rms error (m2 s21) between ensemble mean
and independent observations (dotted line) and the std dev in the
ensemble (solid line). The excellent agreement shows that the SIRF
is working correctly.

clone is not a coherent feature. [Cyclonic rings of this
kind have been observed before in situ data (S. Garzoli
1999, personal communication).]

On the other hand, the cyclonic part of the dipole
does seem to be a dynamical entity. Indeed, while the
anticyclonic rings are more likely to be formed at a
retroflection of this kind, the formation of cyclonic lee
eddies at the point where the Agulhas Current separates
from the continental shelf has been documented recently
(J. Lutjeharms 2001, personal communication). The cy-

clonic eddy might be amplified by cyclonic meanders
in the Agulhas Current, so-called Natal Pulses, that form
close to Durban, South Africa, at 308S, and move down-
stream toward the retroflection area (see Lutjeharms and
Roberts 1988; de Ruijter et al. 1999b; van Leeuwen et
al. 2000). More interesting flow features can be ob-
served, such as the pinching off of a cyclonic eddy in
the Agulhas return flow, near 378S, 328E.

From this discussion, it becomes clear that the area
is governed by highly nonlinear dynamics, so that a data
assimilation method that goes beyond Gaussian statistics
might be needed. I elaborate on this in the concluding
section.

5. Summary and discussion

A new data assimilation method, a variant of se-
quential importance resampling, has been presented. It
is truly variance minimizing for nonlinear dynamics,
unlike schemes based on the (ensemble) Kalman filter.
It is argued that because of its very nature, data assim-
ilation is not an inverse problem, or a minimizing prob-
lem, although it is usually cast in that form. The method
is based on importance resampling, a well-known meth-
od in control theory. New is the application to real-size
problems in this paper.

The method was tested on the KdV equation, and its
behavior was compared to that of the ensemble Kalman
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FIG. 13. Mean of the analyzed SIRF streamfunction fields (m2 s21) of the upper layer. Note the dipolar structure
south of the continent that is dominating the ring-shedding process.

filter. It was shown that the new method leads to new
filter behavior, uncommon to Kalman filter methods. For
instance, Kalman filters might be drawn too close to
observations because of the implicit Gaussian assump-
tion of their prior density. It should be mentioned that
the actual prior and posterior densities in ensemble Kal-
man filters can be highly non-Gaussian; the Gaussian
assumption is only made at analysis time. Furthermore,
it is possible that the variance of the posterior density
is larger than that of the prior density at some locations,
as the new filter showed. This is impossible when the
Gaussian assumption is made. Inspection of the whole
density showed that it did contract toward the obser-
vations, so the overall uncertainty is reduced. Finally,
it was shown that the new filter avoids unbalanced
states. The new method is sensitive to ensemble collapse
when only a few members are relatively close to the
observations, even more so than the EnKF. However,
several experiments with the KdV equation showed that
the filter is able to recover if the model noise is large
enough, probably more easily that the EnKF. Although
several experiments have been performed, a more pre-
cise statement cannot be given at this moment.

The new variance-minimizing filter was tested with
a large-scale problem. Because of the high dimension
of the state space in real-size applications, care has to
be taken when formulating the probability density of
the observations. It was argued that because of outliers,
a Gaussian density is too narrow; that is, its tails are

too low. One measurement can degrade the solution if
this is not taken into account. A Lorentz profile was
used in this paper, leading to a more robust filter that
seemed to work quite well. A comparison with inde-
pendent observations showed that the spread in the en-
semble closely resembled the true rms error of the so-
lution.

An interesting feature of the method is that the var-
iance of the posterior density can be larger than that of
the prior density. This can be understood in terms of
the non-Gaussianity of the method. It can be shown that
a measure of uncertainty from information theory, the
entropy, is decreasing in the examples presented in this
paper.

To sum up, the new method is truly variance mini-
mizing, no matrix inversions are needed, the observa-
tions can be distributed non-Gaussian, and the mea-
surement functionals can be nonlinear without any prob-
lem. Furthermore, it preserves prior model constraints
such as positive definiteness, unlike Kalman filter–like
methods that mix states at analysis time, and provides
error estimates, unlike four-dimensional variational data
assimilation (4DVAR)-like methods. Finally, it is easy
to implement and parallel, by its very nature.

Not withstanding these advantages, some challenging
issues remain. The matter of ensemble collapse has to
be investigated further. It might be related to the true
dimension of the attractor, the quality of the observa-
tions, the initial error estimates and the first guess itself,
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the errors in the model dynamics, etc. Only practical
experience will probably help us here. Recently, several
variants of the EnKF have been proposed in which a
forgetting factor is introduced in the Kalman gain [e.g.,
the singular evolutive extended Kalman (SEEK) and
singular evolutive interpolated Kalman (SEIK) filters;
see Pham (2001)]. The procedure requires that a factor
be placed in front of the error covariance of the obser-
vations in the Kalman gain, and that the factor be smaller
than 1. Another related method, in which a covariance
inflation factor is used, is proposed by Anderson (2001).
This factor multiplies the prior model density to prevent
ensemble collapse. The result of both methods is that
the error covariance of the observations is artificially
reduced compared to that of the model, so that the model
state is pulled more to the observations than it should
be, according to the Kalman filter. (So, the filter partly
forgets the prior model state.) This will prevent filter
divergence from occurring. Indeed, much smaller en-
sembles can be used without ensemble collapse [Pham
(2001) can follow a trajectory on the Lorenz63 attractor
that is only partially measured with only three ensemble
members], but it is unclear what is actually done. One
can argue that the Kalman filter is not optimal for non-
linear problems, so that some freedom is present. On
the other hand, it pulls the analyzed fields closer to the
observations, but that is not what data assimilation is
about in the first place. To put it to an extreme, the
model should not be used as an interpolator between
the observations; it contains important information in
itself.

Another problem with the SIRF is that it performs
only a reweighting of the ensemble members, so no
‘‘new blood’’ enters the ensemble at analysis times. The
EnKF has the same problem: each updated member is
just a linear combination of the old ones. The reason
that the EnKF works so well for even a fairly large state
space (over one million; the DIADEM group 2000, per-
sonal communication) is that the updates are done lo-
cally. Apart from decreasing the noise in the estimates,
as Houtekamer and Mitchell (1998, 2001) argue, it also
updates the large-scale structure of each ensemble mem-
ber. A straightforward extension of the present method
is to implement local updating. A problem is then that,
at some point, the solution will jump from one member
to the other, potentially leading to strongly unbalanced
states. EnKF-like methods do not have this problem
because of the smearing effect of the Kalman gain.

One can question why the method can work in a
dynamical situation with many growing modes. For ex-
ample, if the number of growing modes is larger than
the number of ensemble members, the method cannot
work. However, this is only true if the modes do not
interact. We know from quasigeostrophic dynamics (see,
e.g., van der Vaart et al. 2001) that growing modes have
strong nonlinear interactions, producing new unstable
modes and rectifying main flows. So, just counting the
number of growing singular vectors might be mislead-

ing. The truly interesting variable is the dimension of
the attractor of the model, but to calculate that is still
beyond our power. Evidence that the quasigeostrophic
model used here is indeed highly nonlinear is given by
the rapid error growth in the unconstrained run and the
highly non-Gaussian probability densities presented in
Figs. 9 and 10. This discussion shows that even if meth-
ods do not work on simple nonlinear models, they might
work in more realistic settings like a multilayer quasi-
geostrophic model. Obviously, much more research is
needed to push these statements beyond mere conjec-
ture.
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