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Abstract
We investigate the error dynamics for cycled data assimilation systems, such
that the inverse problem of state determination is solved at tk, k = 1, 2, 3, . . .,
with a first guess given by the state propagated via a dynamical system model
Mk from time tk−1 to time tk. In particular, for nonlinear dynamical systems
Mk that are Lipschitz continuous with respect to their initial states, we provide
deterministic estimates for the development of the error ‖ek‖ := ‖x(a)

k − x(t)
k ‖

between the estimated state x(a) and the true state x(t) over time. Clearly,
observation error of size δ > 0 leads to an estimation error in every
assimilation step. These errors can accumulate, if they are not (a) controlled
in the reconstruction and (b) damped by the dynamical system Mk under
consideration. A data assimilation method is called stable, if the error in the
estimate is bounded in time by some constant C. The key task of this work
is to provide estimates for the error ‖ek‖, depending on the size δ of the
observation error, the reconstruction operator Rα , the observation operator H
and the Lipschitz constants K(1) and K(2) on the lower and higher modes of
Mk controlling the damping behaviour of the dynamics. We show that systems
can be stabilized by choosing α sufficiently small, but the bound C will then
depend on the data error δ in the form c‖Rα‖δ with some constant c. Since
‖Rα‖ → ∞ for α → 0, the constant might be large. Numerical examples for
this behaviour in the nonlinear case are provided using a (low-dimensional)
Lorenz ‘63 system.

1. Introduction

Combining observational data with a dynamical system presents many challenges to different
areas of science. Usually, both observations and models are uncertain, which leads to
formulating the problem in a statistical framework [1–3]. However, this problem can also
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considered in a deterministic setting [1, 2]. A very flexible and well-known approach is
minimizing both the data error and the error with respect to our prior idea of the current state,
usually called the background x(b). Minimizing the error functional

J (x) := ∥∥x − x(b)

k

∥∥2 + ‖yk − Hkx‖2 (1)

with measurement data yk and the operator Hk mapping the state onto the observations at
time tk, for k ∈ N0, is known as three-dimensional variational data assimilation (3DVar). The
minimizer of (1) or more generally, the best estimate to the state of the system given by the data
assimilation algorithm, is called the analysis x(a)

k at time tk. The background for the next time-
step is obtained by propagating the analysis by x(b)

k+1 = Mk(x
(a)

k ) with the given dynamical
system Mk. For more details we refer to section 2. Here we only note that the minimization
of (1) is usually denoted as Tikhonov regularization in the framework of ill-posed problems.

In many areas of climate and forecasting science, the dimension of the system dictates the
method which is used to combine observations and dynamics. Data assimilation algorithms
need to be applicable within situations where the dimension of the state space, typically
in numerical weather prediction, ranges between orders of O(107–108) and the number of
observational data is of order ofO(106). Since these algorithms deal with such high dimension,
it is natural to extend analysis into infinite dimension to capture the key features of large-scale
systems. Using an infinite-dimensional approach, we are able to work within a framework that
is best suited to analyse directly challenges that exist in high-dimensional data assimilation
algorithms. In this work we restrict ourselves to analysing 3DVar-type methods in a large-scale
or infinite-dimensional setting.

This work is primarily interested in an estimate for the analysis error. The analysis error
is defined as the difference between the analysis and the true state of the system such that

ek := x(a)

k − x(t)
k , (2)

where x(t)
k represents the true state of the system also at time tk for k ∈ N0. We will call a data

assimilation scheme stable if ‖ek‖X remains bounded by some constant C > 0 for k → ∞
with some appropriate norm ‖ · ‖X relating to the state space X.

In this work we will consider estimates for analysis error using weighted norms. This
approach was also used in previous work [4] where the authors expressed their analysis as
a cycled Tikhonov regularization. In that work, only linear and constant dynamical systems
were analysed. Here we now move a significant step ahead and investigate nonlinear model
dynamics. For this work we concentrate on analysing the situation where the covariance
operators are static in time and apply our theory to 3DVar-type methods with a linear
observation operator H. We will show that using weighted norms enables us to directly
analyse the evolution of the analysis error and demonstrate conditions whereby the analysis
error remains stable for all time.

Here, we will collect and discuss our main assumptions, which are used in different parts
of our arguments and proofs, in a concise way.

(i) We assume that the observation operator H is linear.
A nonlinearity in the operator H would not change the phenomena discussed here, but
would make the presentation much longer and less easy to formulate in detail. Hence we
limit our analysis to linear observation operators.

(ii) We study the case where the observation operator H is time-invariant.
We do not see a principal difficulty to show similar results if H is time-dependent. In that
case we carefully need to describe the relationship between the properties of H over time
in relation to the properties of Mk. If H = Hk with time index k ∈ N0, a similar behaviour
is expected if the ill-posedness of all Hk has a similar nature.
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(iii) We assume that we know H exactly.
We can carry through the same analysis using a noise term on H. The results will be
similar, where of course the value of the regularization parameter needs to be adapted to
the extended setup.

(iv) We assume that the model dynamics given by Mk is uniformly Lipschitz continuous.
Assuming Lipschitz continuity is a widespread approach for geophysical and
meteorological applications, where it is well-known that attractors exist within the
dynamical systems. Without Lipschitz continuity or at least a similar strong assumption,
currently we are not able to carry out a corresponding error analysis.

(v) We assume that Mk is dissipative with respect to the operator H.
Nearly all models in geophysical applications show some type of dissipation on higher
modes of the dynamical system. Here, we study general observation operators H, with
respect to which we assume the dissipative property on Mk. In principle, for each such
observation operator a corresponding analysis needs to be carried out to prove dissipation
on its higher modes. For the Navier–Stokes equations and a particular observation operator,
this has been successfully carried out in [5].

Note that the case of climatic or static covariances is a template for any cycled assimilation
scheme where a reset of the background covariance matrix is carried out regularly or where
the covariance matrix is set up of climatic and dynamic components. The case of completely
evolving covariances by the Kalman filter is more complicated and beyond our current scope.

Often, 3DVar implementations use a change of variable v = B−1/2x as a preconditioning
tool. Preconditioning improves the conditioning of the problem and speeds up the iterations.
It is natural to ask if this would improve the stability analysis carried out here. However,
preconditioning does not change the ill-posedness of the full analysis time evolution. Therefore
all our results will be independent of any preconditioning method.

The paper will be split into five sections. First, we introduce our notation and the data
assimilation algorithm we consider. Then, in section 3 we work out estimates for the analysis
error for a weighed norm state space and study the how the analysis error evolves. We
demonstrate the theory using a simple numerical example in section 4 using the Lorenz ‘63
system. Finally, we bring this work to a conclusion in section 5.

2. Cycled data assimilation algorithms

We consider a dynamical system that we define as a nonlinear dynamical flow and a
linear measurement equation. We set up our work in the framework of Hilbert spaces. Let
M(t)

k : X → X be a true nonlinear model operator which maps a state x(t)
k ∈ X onto the state

x(t)
k+1 for k ∈ N0, where X represents an infinite Hilbert space. The mapping is a discrete-time

evolution where

x(t)
k+1 = M(t)

k

(
x(t)

k

)
, (3)

for x(t)
k ∈ X and k ∈ N0. Here we have used the notation M(t)

k and x(t)
k whereby we remark

that t here refers to the true nonlinear system operator and true state respectively. Furthermore,
we assume that we have a modelled nonlinear model operator Mk : X → X such that

Mk
(
x(t)

k

) = M(t)
k

(
x(t)

k

) + ζk, (4)

where ζk is some additive noise which we call model error for k ∈ N0. To keep this work as
general as possible we consider all forms of noise either deterministic or stochastic. In this
work we require that the noise ζk be bounded by some constant υ > 0 for all time tk for k ∈ N0,
using an appropriate norm associated to the state space X. This assumption is necessary to

3



Inverse Problems 29 (2013) 025002 A J F Moodey et al

keep our analysis deterministic. Readers interested in stochastical derivations in this field are
pointed towards [6].

Furthermore we denote a constant true linear observation operator H (t), such that
H (t) : X → Y maps elements in the Hilbert space X into a Hilbert space Y. The norms
on X and Y are induced by their inner products 〈·, ·〉X and 〈·, ·〉Y respectively. In this work
we will drop the indices X and Y, since it is usually clear which inner product is used. Here
we state that the true observations (measurements) y(t)

k ∈ Y are located at discrete times tk,
linearly such that

y(t)
k = H (t)x(t)

k , (5)

for k ∈ N0 where x(t)
k represents the true state of the system and similarly H (t) is the true

observation operator. We assume that the modelled observation operator H : X → Y is equal
to the true observation operator and that the given observations yk ∈ Y are also taken at
discrete times tk, linearly such that

y(t)
k = H (t)x(t)

k = Hx(t)
k = yk − ηk, (6)

where ηk is some additive noise that we call the observation error for k ∈ N0. Similarly to
the model error, we require that the noise ηk, either deterministic or stochastic, is bounded by
some constant δ > 0 for all time tk for k ∈ N0, again using an appropriate norm associated to
the observation space Y.

The data assimilation task can be interpreted as seeking an analysis x(a)

k at every
assimilation step tk, k ∈ N0 to solve the equation of the first kind

Hx(a)

k = yk (7)

given some prior or background knowledge x(b)

k . Since we know that the observations have
errors we cannot expect to solve (7) exactly in each step and in general it would not make sense
to fit exactly to noisy observations. It is well-known that with a compact linear operator H (7)
is ill-posed in the classical sense, whereby H−1 : Y → X is not continuous. For many modern
remote sensing techniques used for example for atmospheric applications such as radiance
measurements by polar satellites [7, 8], for GPS/GNSS tomography [9] or even for full radar
including nonlinear effects [10], this is the adequate mathematical framework to analyse the
measurements.

A technique in inverse problems to resolve this issue is to use regularization methods, such
that we replace the unbounded operator H−1 with a family of bounded operators Rα . Arguably
the most famous regularization method is Tikhonov regularization where the eigenvalues
of the operator H∗H are shifted by a regularization parameter α, where H∗ denotes the adjoint
to the operator H.

Typically we have a first guess or background x(b)

k , for k ∈ N0, which is an a priori
estimate calculated from an earlier analysis, subject to the nonlinear discrete-time evolution

x(b)

k+1 = Mk
(
x(a)

k

)
, (8)

for k ∈ N0. For example, in numerical weather prediction, this background state operationally
comes from a previous short-term forecast [11, 12]. Using this a priori knowledge we can
formulate the following Tikhonov functional

J (Tik)
(
x(a)

k

)
:= α

∥∥x(a)

k − x(b)

k

∥∥2
X + ∥∥yk − Hx(a)

k

∥∥2
Y, (9)

subject to (8) for k ∈ N0. For a linear operator H, the minimum is given by the solution to the
normal equations, which can be reformulated into the update formula

x(a)

k = x(b)

k + Rα

(
yk − Hx(b)

k

)
, (10)
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where

Rα := (αI + H∗H)−1H∗ (11)

is called the Tikhonov inverse, with regularization parameter α > 0. In other disciplines the
operator Rα is known as the Kalman gain matrix for an appropriate definition of H∗ [13–15].
Using (8) we can write (10) purely in terms of the analysis field x(a)

k ,

x(a)

k+1 = Mk
(
x(a)

k

) + Rα

(
yk+1 − HMk

(
x(a)

k

))
(12)

for k ∈ N0.
In the finite-dimensional setting, such that X = R

n and Y = R
m, where typically in

numerical weather prediction m 	 n, the norms on X and Y can be defined using invertible
covariance matrices B ∈ R

n×n and R ∈ R
m×m. These covariance matrices, B and R, statistically

model the errors in the background state and the observations respectively. In the infinite-
dimensional setting we call these weights covariance operators, such that B : X → X and
R : Y → Y. For the purpose of this work we will assume that the operators B and R are
positive definite, with bounded inverses.

With the choice of regularization parameter α = 1 we can connect the popular
data assimilation technique 3DVar with cycled Tikhonov regularization. By changing the
regularization parameter α we carry out an inflation to the background error statistics. We
align this interpretation with variance inflation, which is popular in the data assimilation
community. The 3DVar functional takes the following form

J (3D)
(
x(a)

k

)
:= 〈

B−1
(
x(a)

k − x(b)

k

)
, x(a)

k − x(b)

k

〉
L2 + 〈

R−1
(
yk − Hx(a)

k

)
, yk − Hx(a)

k

〉
L2 , (13)

with respect to an L2 inner product, subject to (8) for k ∈ N0. For a linear operator H, the
minimum of the 3DVar functional is given by the solution to the normal equations, which can
be reformulated into the update formula

x(a)

k = x(b)

k + K
(
yk − Hx(b)

k

)
, (14)

where

K = BH ′(HBH ′ + R)−1 (15)

is again the Kalman gain in an equivalent form, where H ′ denotes the adjoint operator with
respect to the L2 inner product. Here (15) does not change over time since we concentrate
our analysis on 3DVar-type methods. It is important to distinguish this type of algorithm from
other algorithms that evolve the covariances over time, such as the Kalman filter. Of course
the Kalman filter will change (15) in each assimilation step. The adjoint H∗ for the weighted
spaces is given by

H∗ = BH ′R−1, (16)

such that for α = 1 the Tikhonov inverse Rα is equivalent to the Kalman gain K. For α �= 1
we need to replace B by B/α to have equivalence of (11) and (15). In the next section we will
analyse the asymptotic behaviour of this algorithm in a nonlinear framework, formulating the
problem using weighted norms.

3. Error evolution of data assimilation systems

Here we study the error evolution of the cycled data assimilation systems which we introduced
in section 2 for weighted norms. In previous work [4] the authors connected 3DVar with cycled
Tikhonov regularization using weighted norms, where〈

x(b)

k , H∗yk
〉
B−1 := 〈

x(b)

k , B−1H∗yk
〉
L2 , (17)

5
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Hx(b)

k , yk
〉
R−1 := 〈

Hx(b)

k , R−1yk
〉
L2 , (18)

such that the index L2 indicates a standard L2 inner product. In this section we extend the work
of [4] to nonlinear systems with respect to weighted norms. Since the algorithm we consider
uses static covariances we are able to define the metric associated to the state and measurement
space according to the errors in the background and observation respectively. By including the
covariance information in the norms we are able to directly work with the forward nonlinear
map Mk and the linear observation operator H. We write (10) at time tk+1 in terms of the
analysis field using (8), to give

x(a)

k+1 = Mk
(
x(a)

k

) + (αI + H∗H)−1H∗(yk+1 − HMk
(
x(a)

k

))
(19)

= (I − (αI + H∗H)−1H∗H)Mk
(
x(a)

k

) + Rαyk+1 (20)

= (I + α−1H∗H)−1Mk
(
x(a)

k

) + Rα

(
y(t)

k+1 + ηk+1

)
(21)

= (I + α−1H∗H)−1Mk
(
x(a)

k

) + Rα

(
HM(t)

k

(
x(t)

k

) + ηk+1

)
, (22)

using (5) and (3). Now we subtract the true state from both sides and define ek+1 := x(a)

k+1−x(t)
k+1,

to obtain

x(a)

k+1 − x(t)
k+1 = (I + α−1H∗H)−1Mk

(
x(a)

k

) + ((αI + H∗H)−1H∗H − I)M(t)
k

(
x(t)

k

) + Rαηk+1

(23)

ek+1 = (I + α−1H∗H)−1
(
Mk

(
x(a)

k

) − M(t)
k

(
x(t)

k

)) + Rαηk+1 (24)

= (I + α−1H∗H)−1
(
Mk

(
x(a)

k

) − Mk
(
x(t)

k

)) + (I + α−1H∗H)−1
(
Mk

(
x(t)

k

)
− M(t)

k

(
x(t)

k

)) + Rαηk+1 (25)

= (I + α−1H∗H)−1(Mk
(
x(a)

k

) − Mk
(
x(t)

k

)) + (I + α−1H∗H)−1ζk + Rαηk+1 (26)

= N
(
Mk

(
x(a)

k

) − Mk
(
x(t)

k

)) + Nζk + Rαηk+1, (27)

where N := (I + α−1H∗H)−1 = I − RαH. In this work (27) will form the basis for our
analysis and asymptotic behaviour. This form explicitly represents how various terms in the
algorithm behave in each assimilation step. Here, N represents the reconstruction error operator
which affects the analysis error ek propagated forward in time through the modelled nonlinear
model operator Mk for k ∈ N0. Throughout this work we will refer to the operator N as the
regularized reconstruction error operator. Furthermore, the regularized reconstruction error
operator N also has an impact on the model error term ζk for k ∈ N0. Therefore, controlling
this reconstruction error is necessary in each step to keep the data assimilation scheme stable.

As a first attempt to examine the error behaviour we take the norm on both sides and use
the triangle inequality and the sub-multiplicative property as follows:

‖ek+1‖ � ‖N‖ · ∥∥Mk
(
x(a)

k

) − Mk
(
x(t)

k

)∥∥ + ‖N‖υ + ‖Rα‖δ, (28)

where constants υ and δ bound the noise on the model error and observations respectively.
For the Hilbert space (X, ‖ · ‖B−1 ) this bound can be seen as a nonlinear extension to [4].

We now need some assumptions on the nonlinear map Mk. It is natural to assume that
the map is Lipschitz continuous, which does not restrict the generality of this work. However,
we will require that the map has a global Lipschitz constant for all time.

6
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Assumption 3.1. The nonlinear mapping Mk : X → X is Lipschitz continuous with a global
Lipschitz constant such that given any a, b ∈ X,

‖Mk(a) − Mk(b)‖ � Kk · ‖a − b‖ (29)

where Kk � K, the global Lipschitz constant for all time tk, for k ∈ N0. If the system is time-
invariant then of course, Kk = K for all time. However it is not necessary for the nonlinear
system to be time-invariant. In this work we will refer to K without subscript as the global
Lipschitz constant.

Now, applying Assumption 3.1 we obtain,

‖ek+1‖ � K‖N‖ · ‖ek‖ + ‖N‖υ + ‖Rα‖δ (30)

where K is the global Lipschitz constant. Since everything other than the analysis error is
independent of time, we can explicitly define � := K‖N‖ and formulate the following result.

Theorem 3.2. If the model error ζk, k ∈ N0, is bounded by υ > 0, the observation error ηk,
k ∈ N0, is bounded by δ > 0 and the model operator Mk is Lipschitz continuous, then the
analysis error ek+1 := x(a)

k+1 − x(t)
k+1, for k ∈ N0, is estimated by

‖ek+1‖ � �k+1‖e0‖ +
(

k∑
l=0

�l

)
(σ + τ ), (31)

where � := K‖N‖, with global Lipschitz constant K and σ := ‖N‖υ and τ := ‖Rα‖δ, where
N := I − RαH and Rα := (αI + H∗H)−1H∗. If � < 1, then

‖ek+1‖ � �k+1‖e0‖ + 1 − �k+1

1 − �
(σ + τ ), (32)

such that

lim sup
k→∞

‖ek+1‖ � ‖N‖υ + ‖Rα‖δ
1 − �

. (33)

Proof. We use induction as follows. For the base case we set k = 0, and from (30) we obtain

‖e1‖ � �‖e0‖ + ‖N‖υ + ‖Rα‖δ, (34)

which is equivalent to (31) substituting for σ and τ . Now we continue with the inductive step,

‖ek+1‖ � �‖ek‖ + σ + τ (35)

� �

(
�k‖e0‖ +

(
k−1∑
l=0

�l

)
(σ + τ )

)
+ σ + τ (36)

� �k+1‖e0‖ +
(

k∑
l=0

�l

)
(σ + τ ) (37)

which is equal to (31), hence completing the proof by induction. Assuming � < 1 and using
the geometric series we obtain (32), which completes the proof. �

We have described error estimates for the analysis error of cycled data assimilation
schemes in theorem 3.2. For the Hilbert space (X, ‖ · ‖B−1 ), the sufficient condition to keep
the analysis error bounded is that � = K‖N‖ < 1. Here the regularized reconstruction error
has to be strong enough so that, multiplied with the global Lipschitz constant K, � is kept less
than one. Now we explore how we can make ‖N‖ small enough to ensure � < 1.

7



Inverse Problems 29 (2013) 025002 A J F Moodey et al

Lemma 3.3. For a state space X, an injective well-posed operator H and a parameter
0 < ρ < 1, by choosing the regularization parameter α > 0 sufficiently small we can always
achieve � � ρ < 1.

Proof. We first prove the result for the infinite-dimensional setting. As the operator H is
well-posed, G := H∗H has a complete orthonormal basis ϕ(1), . . . , ϕ(∞) of eigenvectors with
eigenvalues λ(1), . . . , λ(∞) > 0. If K > 1 we choose ρ such that ρ < 1/K, otherwise we
choose any ρ < 1. Then we choose an α such that

α

(
1

ρ
− 1

)
= min

j=1,...,∞
|λ( j)| > 0. (38)

Then,

� = K‖N‖ = K‖(I + α−1G)−1‖ = K sup
j∈{1,...,∞}

∣∣∣∣∣ 1

1 + λ( j)

α

∣∣∣∣∣
� Kα

α + α
(

1
ρ

− 1
) = Kρ < 1. (39)

For the finite-dimensional case, the orthonormal basis of eigenvectors and eigenvalues becomes
finite and the proof is the same. �

It is clear from lemma 3.3 that given any global Lipschitz constant K > 0, that is any
model dynamics, we can always choose an α > 0 sufficiently small so that � � Kρ < 1. This
is an interesting conclusion to draw, since the regularization parameter controls how much we
trust the background term in (9). Of course reducing α means that we solve the problem in (7)
more accurately, which implies that solving the problem accurately keeps the data assimilation
scheme stable for all time. However, from the theory of Tikhonov regularization, we know
that α must be kept large enough to shift the spectrum of H∗H to combat ill-posedness in
the observation operator. Representing the problem in an infinite dimension allows us to
directly represent this effect of ill-posedness in the problem. We will see that for an ill-posed
observation operator, significant damping must be present on higher spectral modes for us to
control the behaviour of the analysis error over time.

The estimates in (39) are based on lower bounds for the spectrum of H∗H. In the large-
scale or infinite-dimensional case, our interest is with compact observation operators H, where
the spectrum decays to zero in the infinite-dimensional setting. Here, to achieve a stable cycled
scheme with an ill-posed observation operator, we now show that the Lipschitz constant has
to be contractive with respect to higher spectral modes of H. We remark,

Remark 3.4. For the Hilbert space (X, ‖ · ‖B−1 ) and a compact observation operator H, (30)
implies that the model operator Mk must be strictly damping, that is the global Lipschitz
constant K < 1. This is apparent since for an infinite-dimensional state space the norm of the
regularized reconstruction error ‖N‖ = 1.

Further details of the spectrum and norm estimates of the regularized reconstruction error
operator can be found in the literature [16, 4]. However, we will see that by splitting the
state space X we are able to use the regularized reconstruction error operator N to control
the Lipschitz constant K over lower spectral modes. In considering lower and higher spectral
modes separately we are able to obtain a stable cycled scheme for a wider class of systems.
As we have mentioned, the infinite-dimensional setting here highlights the practical problem
in keeping the analysis error bounded for all time. We will see that damping with respect to
the observation operator H is required in the nonlinear map Mk.

8
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We begin defining orthogonal projection operators, P1 and P2 such that,

P1 : X → span{ϕi, i � n}, (40)

P2 : X → span{ϕi, i > n}, (41)

with respect to the singular system (μi,ϕi, gi) of H, with i ∈ N. We abbreviate

X1 := span{ϕ1, . . . ,ϕn}, X2 := span{ϕn+1,ϕn+2, . . .}. (42)

More details on the singular system of a compact linear operator can be found in [17]. Returning
to (27) we have,

ek+1 = N(P1 + P2)
(
Mk

(
x(a)

k

) − Mk
(
x(t)

k

)) + Nζk + Rαηk+1 (43)

= N|X1 P1
(
Mk

(
x(a)

k

) − Mk
(
x(t)

k

)) + Nζk + N|X2 P2
(
Mk

(
x(a)

k

)
− Mk

(
x(t)

k

)) + Rαηk+1. (44)

Now defining
M(1)

k (·) := P1 ◦ Mk(·), M(2)

k (·) := P2 ◦ Mk(·), (45)

we have
ek+1 = N|X1

(
M(1)

k

(
x(a)

k

) − M(1)

k

(
x(t)

k

)) + Nζk + N|X2

(
M(2)

k

(
x(a)

k

) − M(2)

k

(
x(t)

k

)) + Rαηk+1.

(46)

Using the triangle inequality with the sub-multiplicative property we can obtain a bound on
this error as follows:

‖ek+1‖ = ∥∥N|X1

(
M(1)

k

(
x(a)

k

) − M(1)

k

(
x(t)

k

)) + Nζk + N|X2

(
M(2)

k

(
x(a)

k

) − M(2)

k

(
x(t)

k

))
+ Rαηk+1

∥∥ (47)

� ‖N|X1‖ · ∥∥M(1)

k

(
x(a)

k

) − M(1)

k

(
x(t)

k

)∥∥ + ‖N|X2‖ · ∥∥M(2)

k

(
x(a)

k

) − M(2)

k

(
x(t)

k

)∥∥
+ ‖Nζk‖ + ‖Rαηk+1‖ (48)

� K(1)

k · ‖N|X1‖ · ∥∥x(a)

k − x(t)
k

∥∥ + K(2)

k · ‖N|X2‖ · ∥∥x(a)

k − x(t)
k

∥∥ + ‖Nζk‖ + ‖Rαηk+1‖
(49)

�
(
�

(1)

k + �
(2)

k

)‖ek‖ + ‖N‖υ + ‖Rα‖δ, (50)

where we have assumed Lipschitz continuity,∥∥M( j)
k (x(a)

k ) − M( j)
k (x(t)

k )
∥∥ � K( j)

k

∥∥x(a)

k − x(t)
k

∥∥ (51)

for j = 1, 2, defining �
(1)

k := K(1)

k · ‖N|X1‖ and �
(2)

k := K(2)

k · ‖N|X2‖ with restrictions
according to the singular system of H. Again, we now assume that the modelled nonlinear
operator Mk is globally Lipschitz continuous in accordance with Assumption 3.1, where
K(1)

k � K(1) and K(2)

k � K(2) for all time tk. Similar to theorem 3.2 we can form the following
result.

Theorem 3.5. For the Hilbert space (X, ‖ · ‖B−1 ), if the model error ζk, k ∈ N0, is bounded by
υ > 0, the observation error ηk, k ∈ N0, is bounded by δ > 0 and the model operator Mk is
Lipschitz continuous, then the analysis error ek+1 := x(a)

k+1 − x(t)
k+1, for k ∈ N0 is estimated by

‖ek+1‖ � �k+1‖e0‖ +
(

k∑
l=0

�l

)
(σ + τ ), (52)

9
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where � := �(1) +�(2), for �(1) := K(1) · ‖N|X1‖ and �(2) := K(2) · ‖N|X2‖ with restrictions
according to the singular system of H. Furthermore σ := ‖N‖υ and τ := ‖Rα‖δ where
N := I − RαH and Rα := (αI + H∗H)−1H∗. If � < 1, then

‖ek+1‖ � �k+1‖e0‖ + 1 − �k+1

1 − �
(σ + τ ), (53)

such that

lim sup
k→∞

‖ek‖ � ‖N‖υ + ‖Rα‖δ
1 − �

. (54)

Proof. The proof is the same as that of theorem 3.2 for a different constant � := �(1) + �(2),
with restrictions according to the singular system of H. �

Remark 3.6. Since H is compact, for an infinite-dimensional state space X, we have that
‖N‖ = 1 and by using the arithmetic-geometric mean inequality we are able to bound the
Tikhonov inverse by

‖Rα‖ � 1

2
√

α
. (55)

Therefore from (54) we have,

lim sup
k→∞

‖ek‖ �
υ + δ

2
√

α

1 − �
. (56)

We now present two results which are obtained directly from spectral theory and can also
be seen in [4] in the linear setting. These results will demonstrate how we require that the
nonlinear map Mk be dissipative with respect to higher spectral modes of the observation
operator H.

Lemma 3.7. For the Hilbert space (X, ‖ · ‖B−1 ), on the subspace X1 and for a parameter
0 < ρ < 1, by choosing the regularization parameter α > 0 sufficiently small, we can always
achieve ‖N|X1‖ � ρ < 1.

Proof. As the space X1 is spanned by a finite number of spectral modes of the operator H we
use lemma 3.3 to complete the proof. �

Lemma 3.8. For the Hilbert space (X, ‖ · ‖B−1 ), the norm of the operator N|X2 is given by

‖N|X2‖ = 1. (57)

Proof. Since H is compact, the singular values μi → 0 for i → ∞. This means that

‖N|X2‖ = sup
i=n+1,...,∞

∣∣∣∣ α

α + μ2
i

∣∣∣∣ = 1 (58)

for all α > 0, which completes the proof. �
As we have seen from theorem 3.5, the sufficient condition for stability of the cycled data

assimilation scheme requires that � < 1. Applying our norm estimates in (48) and (49) with
both lemma 3.7 and lemma 3.8, we obtain

� = K(1) · ‖N|X1‖ + K(2) · ‖N|X2‖ (59)

� K(1) · ρ + K(2). (60)

10
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Here we directly see how the nonlinear growth in X1 can be controlled by the regularization
parameter α > 0. Furthermore, it is seen that the nonlinear system Mk has to be damping in
X2 for all time. Therefore only if Mk is a sufficiently damping on higher spectral modes of H
will we be able to stabilize the cycled data assimilation scheme. We call this type of system
dissipative with respect to H as summarized in the following definition.

Definition 3.9. A nonlinear system Mk, k ∈ N0, is dissipative with respect to H if it is Lipschitz
continuous and damping with respect to higher spectral modes of H, in the sense that M(2)

k
defined by (45) satisfies∥∥M(2)

k (a) − M(2)

k (b)
∥∥ � K(2)

k · ‖a − b‖ (61)

∀ a, b ∈ X, where K(2)

k � K(2) < 1 uniformly for k ∈ N0.

Under this assumption that Mk is dissipative with respect to H, we can choose the
regularization parameter α > 0 small enough such that,

ρ <
1 − K(2)

K(1)
(62)

to achieve a stable cycled scheme. We summarize in the following theorem.

Theorem 3.10. For the Hilbert space (X, ‖ · ‖B−1 ), assume the system Mk is Lipschitz
continuous and dissipative with respect to higher spectral modes of H. Then, for regularization
parameter α > 0 sufficiently small, that is there exists an ᾱ such that for α < ᾱ, we have
� := K(1)‖N|X1‖ + K(2)‖N|X2‖ < 1. Under the conditions of theorem 3.5 the analysis error
is bounded over time by

lim sup
k→∞

‖ek‖ � ‖N‖υ + ‖Rα‖δ
1 − �

�
υ + δ

2
√

α

1 − �
. (63)

Proof. If Mk is Lipschitz continuous and dissipative with respect to H, we first show that we
can achieve � < 1. From (60), the Lipschitz constants K(1) and K(2) determine our ability to
achieve � < 1. Using lemma 3.8 we have ‖N|X2‖ = 1 therefore under the assumption that
Mk is dissipative, then for the subspace X2 we have that K(2) < 1. Now from lemma 3.7
the norm ‖N|X1‖ can be made arbitrarily small such that ‖N|X1‖ � ρ < 1 where ρ is some
positive constant chosen such (62) holds. Then we obtain � < 1 from (60). The bound for
the analysis error is then given by theorem 3.5, which also provides the estimate in (63). The
inequality completes the proof in accordance with remark 3.6. �

As we have seen, the analysis error can be kept stable for all time with respect to the
weighted norms defined in (18). These results depend on the weighted norm ‖ · ‖B−1 which is
constant for all time. However, in practice other more advanced data assimilation schemes are
used, where the covariances evolves in time. Notably the Kalman filter evolves the covariance
in each assimilation step, though usually some additive climatological component of B or
multiplicative variance inflation takes care of model errors, in which case the above analysis
should carry over to more general cycled assimilation schemes.

Working in the infinite dimension demonstrates how the ill-posedness in the observation
operator can lead to an unstable data assimilation scheme. However, using the regularization
parameter, we are able to keep the analysis error bounded for all time. This of course has
repercussions which we will explore further in sections 4 and 5.

11
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4. Numerical examples

This work has focused on the analysis of the error evolution of data assimilation algorithms. To
complement the theoretical results, here we present some simple numerics to demonstrate the
behaviour of the analysis error in (27). Our interest lies with the choice of the regularization
parameter α, as discussed in section 3. Here we consider the famous Lorenz ‘63 system
[18], which presents chaotic behaviour under the classical parameters. Lorenz derived these
equations from a Fourier truncation of the flow equations that govern thermal convection.
Despite their limited practical use, these equations present an excellent foundation to
demonstrate the behaviour of the analysis error. The Lorenz ‘63 equations are as follows:

dx

dt
= −σ (x − y), (64)

dy

dt
= ρx − y − xz, (65)

dz

dt
= xy − βz, (66)

where typically σ , ρ and β are known as the Prandtl number, the Rayleigh number and a
non-dimensional wave number respectively. Throughout these experiments we will use the
classical parameters, σ = 10, ρ = 28 and β = 8/3. We discretize the system using a fourth
order Runge–Kutta approximation. For these experiments we will omit model error from the
model equations to concentrate on the behaviour of the analysis error compared with the error
in the observations in each assimilation step. Since the same regularized reconstruction error
operator is applied to the analysis error and the model error, there is limited inconsistency in
assuming accurate model dynamics.

It is natural to set up the noise in these experiments to be Gaussian, since the 3DVar
functional can be viewed as a maximum a posteriori probability Bayesian estimator of the
state of the system under Gaussian statistics. However, as we have discussed in previous
sections, we consider the 3DVar scheme purely as an algorithm and require for our analysis
that the noise be bounded for all time. Therefore we shall choose normally distributed noise
and note that for a finite sample the noise is bounded and therefore is consistent with the theory
developed in section 3.

We set up a twin experiment, whereby we begin with an initial condition,(
x(t)

0 , y(t)
0 , z(t)

0

) = (−5.8696,−6.7824, 22.3356),

which was obtained using an initial reference point, (0.001, 0.001, 2.001) that was spun-up
for 1000 time-steps to obtain the initial condition (x(t)

0 , y(t)
0 , z(t)

0 ), which lies on the attractor.
We produce a run of the system until time t = 100 with a step-size h = 0.01, which we call
a truth run. Now using this truth we create observations at every tenth time-step by adding
random normally distributed noise with zero mean and standard deviation σ(o) = √

2/40. The
background state is calculated in the same way at initial time t0 with zero mean and standard
deviation σ(b) = 1/400 such that,(

x(b)

0 , y(b)

0 , z(b)

0

) = (−5.8674,−6.7860, 22.3338).

Now, ignoring the model error term in (27), we calculate the analysis error ek for k =
1, . . . , 1000. Assimilating only at every tenth time-step, we allow for the nonlinear model
dynamics to play a role before we apply the data assimilation scheme. We calculate a sampled

12
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Figure 1. L2 norm of the analysis error ‖ek‖L2 integrated for all assimilation time tk for
k = 1, . . . , 1000, varying the regularization parameter, α.

background error covariance between the background state and true state over the whole
trajectory such that

B =
⎛
⎝117.6325 117.6374 −2.3513

117.6374 152.6906 −2.0838
−2.3513 −2.0838 110.8491

⎞
⎠ . (67)

We simulate the consequence of an ill-posed observation operator H with a random 3 × 3
matrix with its last singular value μ3 = 10−8 such that

H =
⎛
⎝0.4267 0.5220 0.5059

0.8384 −0.7453 1.6690
0.4105 1.6187 0.0610

⎞
⎠ . (68)

Therefore, H is severely ill-conditioned with a condition number, κ = 2.1051 × 108.
Varying the regularization parameter α we can study the averaged error, that is the

integrated normalized total analysis error calculated by the sum of ‖ek‖L2 from k =
1, . . . , 1000, renormalized with division by 1000. In figure 1, we plot the error integral against
the regularization parameter. Here we observe that α needs to be chosen small enough to keep
the analysis error bounded, although if it is chosen too small it will lead to a large analysis
error bound.

We select the largest regularization parameter from the error integral plot in figure 1.
With this value of α = 200, in figure 2(a) we observe that the analysis error ‖e(a)

k ‖L2 fluctuates
around the value of 20. The analysis is not able to track the truth and this can seen in figure 2(b),
where we plot the truth and analysis in state space from assimilation time t200 until t220. We
observe over this time interval that the analysis does not stay on the same wing of the attractor
as the truth. This is evident across the whole time interval, which we confirm in figures 2(c)
and (d) where the truth and analysis are plotted in state space from assimilation time t774 until
t805 and t858 until t895 respectively. In figure 2(c) the analysis and truth are close together at
assimilation time t774. However over time the analysis fails to follow the truth onto the same
wing of the attractor. This is also reflected in figure 2(d) where the analysis spends most time
on the wrong wing of the attractor to the truth.

Now we carry out variance inflation by choosing a smaller regularization parameter
α = 2, which corresponds to the parameter α where the error integral is smallest in figure 1.
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Figure 2. (a) L2 norm of the analysis error ‖ek‖L2 as the scheme is cycled for index k, with
regularization parameter α = 200, which corresponds to 3DVar. (b), (c), (d) Trajectories, as
described in table 1.
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Figure 3. (a) L2 norm of the analysis error ‖ek‖L2 as the scheme is cycled for the index k, with
regularization parameter α = 2, an inflation in the background variance of 100%. (b) Trajectories,
as described in table 1.

Subsequently repeating with the same data, we observe in figure 3(a) that the analysis error
fluctuates around a much smaller value compared with figure 2(a). This is reflected in figure 3(b)
where the analysis is now able to follow the trajectory of the truth better and remains for the
assimilation time (t200 until t220) on the same wing of the attractor as the truth.

In figure 4(a) we reduce the regularization parameter even further so that α = 10−10 and
we see that the analysis error becomes large again. From regularization theory we know that
for a very small α the Tikhonov inverse can become very large in norm, which will affect the
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Figure 4. (a) L2 norm of the analysis error ‖ek‖L2 as the scheme is cycled for the index k, with
regularization parameter α = 10−10, an inflation in the background variance of 2 × 1012%. (b)
Trajectories, as described in table 1.

observation error in each assimilation step and this is confirmed in figure 1. For this choice of
α we also plot the trajectories of the analysis and the truth in figure 4(b). Here we observe that
the analysis attempts to track the truth. However the consequence of an ill-posed observation
operator, leading to a large Tikhonov inverse (in norm), forces the analysis off the attractor.
Since the scheme trusts the observations much more than the background, the analysis is
forced towards the observations, hence the analysis error is smaller for all time in figure 4(a)
compared with figure 2(a).

Here the numerical results support the theory developed that by choosing α small enough,
we can reduce the analysis error of the cycled data assimilation scheme for all time. However if
it is chosen too small the analysis error will be amplified for an ill-posed observation operator.

We need to add two comments on the choice of α and the error size shown in
figures 1–4. First, the numerics have been carried out with random error which has been
drawn independently at every time-step from the Gaussian distribution. The corresponding
error will be much better than the worst case error for which our estimates have been derived.
However, note that the worst case scenario is possible, though with very low probability. It is
of the class of low-probability-high-risk-events, which are of particular importance for many
environmental applications.

Second, in principle it is possible to analytically calculate a stable α, when the Lipschitz
constants and singular values of H are known, using equations (39) and (62). We have carried
this out for a simple example as follows, leading to the dotted line in figure 5.

In order to demonstrate the bounds developed in section 3, we repeat the experiment
starting from the same random 3 × 3 matrix for the observation operator H. We increase μ3

from 10−8 to 10−3, which is necessary since we want to achieve ‖N‖ < 1/K. If μ3 is chosen
too small, that is H is very ill-conditioned, then we would need to choose α sufficiently small
to obtain ‖N‖ < 1/K. Theoretically this is possible, however numerically, with such a small
α, the matrix N then becomes close to singular. Therefore we choose μ3 = 10−3 so that we
have a different observation operator,

H =
⎛
⎝0.4275 0.5218 0.5055

0.8381 −0.7453 1.6692
0.4102 1.6188 0.0612

⎞
⎠ , (69)

with condition number, κ = 2.1051 × 103. We use the same initial condition, background
state and error covariance matrix as before.
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Figure 5. L2 norm of the analysis error, ‖ek‖L2 as the scheme is cycled for the index k with
regularization parameter, α = 10−6. Solid line: nonlinear analysis error. Dashed line: linear bound.
Dotted line: asymptotic limit.

Table 1. Summary of the notation choices for figures 2–4.

Figures 2(b) and 4(b) Figure 2(c) Figure 2(d) Figure 3(b)

Solid line (Truth) x(t)
200:220 x(t)

774:805 x(t)
858:895 x(t)

200:220

Diamond (Truth) x(t)
200 x(t)

774 x(t)
858 x(t)

200

Circle (Truth) x(t)
201:220 x(t)

775:805 x(t)
859:895 x(t)

201:220

Square (Analysis) x(a)

200 x(a)

774 x(a)

858 x(a)

200

Star (Analysis) x(a)

201:220 x(a)

775:805 x(a)

859:895 x(a)

201:220

Dotted line (Analysis) x(a)

200:220

Since we are interested in our bounds on the analysis error in (30) we need to compute
the global Lipschitz constant for this experiment. Using the truth and background runs
we can calculate a Lipschitz constant from (29) every 10 time-steps. Choosing the largest
value over all time we obtain a global Lipschitz constant K = 1.9837 for this experiment. This
of course is only an estimate to the actual Lipschitz constant. However it will be sufficient for
these experiments. Therefore we choose a regularization parameter, α = 10−6 which is small
enough so that ‖N‖ < 1/K, leading to � ≈ 0.9918. We calculate a bound on the observational
noise with respect to the L2 norm so that δ = 0.1571.

In figure 5 we plot the nonlinear analysis error from (27) and the bound on the analysis
error in (30). Since we bound the analysis error by a linear update equation we observe the
linear growth in our bound. For this choice of regularization parameter we observe large
fluctuations in the nonlinear analysis error arising from a Tikhonov inverse that is large in
norm, which was discussed in the first experiment. Also in figure 5 we plot the asymptotic limit
of the analysis error from (63). From these numerical experiments we see that the numerical
bound is not a very tight bound on the actual analysis error. This is of course expected since
our approach is to use norm estimates, therefore we obtain a sufficient condition for a stable
cycled scheme.

The theory in section 3 was for weighted norms with respect to the error covariances.
As previously discussed, we consider 3DVar-type methods which involve a static covariance
matrix for all time. Therefore the inverse background covariance matrix B−1 is acting as a
scaling on the analysis error. We calculate the analysis error ‖ek‖B−1 and plot its evolution
over time for regularization parameters, α = 200, 2 and 10−10. The figures are identical to
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figures 2(a), 3(a) and 4(a) with a rescaled vertical axis. For α = 200 the analysis error fluctuates
around 0.005, then for α = 2 the analysis error reduces to 10−5. With a further inflation such
that α = 10−10 the analysis error increases and fluctuates around 0.002.

We have repeated these experiments for a variety of observation operators H, different
initial conditions and observation error drawn from different distributions. We obtain similar
results, but we omit these experiment to keep this paper concise.

5. Conclusions

In section 3 we saw how, under weighted norms, the choice of the regularization parameter
α was crucial in keeping the data assimilation scheme in a stable range, that is the analysis
error remains bounded over time. Also in section 4 we observed numerically that α has to be
sufficiently small to keep the analysis error controlled over time. However, care must be taken
in treating the regularization parameter, due to other instabilities arising from reducing the
regularization. Moreover, in reducing α the inverse problem in (7) becomes computationally
harder to solve. For the finite-dimensional case it has previously been shown that reducing
α makes the regularized problem more ill-conditioned [19, 20]. Hence a smaller value of α

can lead to a deterioration in the accuracy and speed with which a solution to the regularized
problem can be found using iterative minimization methods. As we explore compact operators
in a high-dimensional setting we see that significant regularization is needed to shift the
eigenvalues of the operator H∗H away from zero. If this is not done then the conditioning
of the problem will have serious numerical implications. Therefore reducing α can affect
the ability with which we are able to calculate the Tikhonov inverse, when the observation
operator is ill-conditioned. Of course the Tikhonov inverse is required in each assimilation
step to solve (7).

Another difficulty in reducing the regularization parameter is evident from the bound
we obtain on the analysis error. As we have seen, variance inflation enables us to control
the nonlinear growth in both the analysis error and the model error. However the additional
term Rα involving the observation error is also affected by the regularization parameter. As
we know from regularization theory, (55) can become relatively large. This was directly seen
in section 4 where reducing the regularization too much meant the error in the observations
became dominant in the analysis error. Therefore reducing the regularization parameter will
reduce the analysis error growth from the previous step (and the model error), although this
could amplify the error due to the observations. This of course depends on how ill-posed the
problem is, as we have seen if the problem is very ill-posed, that is many singular values of
the observation operator H lie very close to zero then the regularization parameter α will need
to be balanced between stability in the inverse problem (α large) and stability in the cycled
data assimilation scheme (α small).

We showed in section 3 that it is possible to keep the analysis error bounded for all time
with an ill-posed observation operator in an infinite-dimensional setting. This was due to the
model dynamics being dissipative with respect to higher spectral modes of the observation
operator. In the case of time-invariant model dynamics the constant K(2) must be shown to be
damping with respect to the subspace X2. This is analogous to the previous work in [4] where
the authors were able to force a contraction for linear time-invariant model dynamics. For
nonlinear model dynamics, the property exploited in the linear setting does not hold, therefore
it is necessary to show this dissipative property for the model dynamics under consideration.
The work of [5] was able to show this property for the incompressible two-dimensional Navier–
Stokes equations where the model dynamics and the observation operator commute. In the
case of time-variant model dynamics then it must be shown that for all time tk, the constants
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K(2)

k � K(2) < 1 and so obey the global property of assumption 3.1 and are damping. This
of course is a particular situation; however it is required for this theory to hold and must be
shown for the model dynamics considered. An extension which would relax this assumption
would be for the subspace X2 to be also dependent on time. Then in each assimilation step
X2 could be chosen so that there is a contraction in the model dynamics with respect to the
observation operator. In this case the regularization parameter would need to be chosen also
in each assimilation step to allow for an expansion in the lower spectral modes in X1.
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