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Particle filters are fully non-linear data assimilation techniques that aim to

represent the probability distribution of the model state given the observations

(the posterior) by a number of particles. In high-dimensional geophysical

applications the number of particles required by the sequential importance

resampling (SIR) particle filter in order to capture the high probability region

of the posterior, is too large to make them usable. However particle filters can

be formulated using proposal densities, which gives greater freedom in how

particles are sampled and allows for a much smaller number of particles. Here

a particle filter is presented which uses the proposal density to ensure that

all particles end up in the high probability region of the posterior probability

density function. This gives rise to the possibility of non-linear data assimilation

in large dimensional systems. The particle filter formulation is compared to

the optimal proposal density particle filter and the implicit particle filter, both

of which also utilise a proposal density. We show that when observations are

available every time step, both schemes will be degenerate when the number of

independent observations is large, unlike the new scheme. The sensitivity of the

new scheme to its parameter values is explored theoretically and demonstrated

using the Lorenz 1963 model. Copyright c© 0000 Royal Meteorological Society
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1. Introduction

The most comprehensive solution to the data assimilation

problem is to establish the full probability density function

(pdf) of the state of a system. Theoretically it is understood

how to represent the full pdf, called the posterior, if it is a

standard density such as a Gaussian. However, this is rarely

the case with the nonlinear model equations and observation

operators of most geoscience applications. Instead, most

present day data assimilation schemes follow one of two

options. One is to make Gaussian and linear assumptions

that lead to a Gaussian posterior, as is done in the ensemble

Kalman filter (EnKF) and its variants (Evensen 1994;

Burgers et al. 1998; Bishop et al. 2001; Anderson 2001;

Whitaker and Hamill 2002). The other, which is used by

schemes such as 4D-Var (Talagrand and Courtier 1987),

is to search only for the maximum of the full posterior

pdf assuming a Gaussian prior. Unfortunately the methods

used in searching for the maximum can not guarantee

that the global, rather than a local, maximum is reached.

Furthermore, uncertainty estimates using the Hessian are

not necessarily appropriate as the Hessian measures the

local curvature. Hence its inverse is not necessarily a good

measure of the width of the posterior when the pdf is non-

Gaussian. Ideally a data assimilation scheme is required that

gives at least some understanding of the full posterior pdf.

Particle filters are data assimilation schemes that provide

a partial solution to this problem. They are fully nonlinear

and represent the full posterior pdf through an ensemble of

model runs, called particles, weighted on their proximity

to observations. Unfortunately they suffer from what is

termed the ‘curse of dimensionality’. Due to computer

limitations only relatively few particles are available to

represent the full posterior pdf. As the dimension of the

state increases it is unlikely that these few particles, when

moving at random through state space, will end up close

to the potentially large number of observations (Snyder

et al. 2008). Consequentially, only one or two particles end

up providing information about the probability region of

interest. One option would be to increase the number of

particles until sufficiently many will always end up close

to all observations. This is an unrealistic scenario unless

computational power and efficiency drastically increase.

A more immediate solution is to develop a scheme that

ensures that only a few particles, when compared to the

number required by the SIR filter, are able to provide a

representation of the high probability regions of the full

posterior pdf.

The equivalent weights particle filter has already been

introduced by Van Leeuwen (2010, 2011). It uses a proposal

density to guide all particles towards the observations and

initial results are very exciting. The scheme was able to

track the true solution of the chaotic three-dimensional

Lorenz-63 model with only partial observations of the

state vector using just three particles. In comparison, the

SIR filter with 20 particles will still fail to capture the

transition to the opposite wing of the Lorenz butterfly

attractor for the chosen parameter settings. The scheme also

scales extremely well. When applied to the both the 40-

dimensional and 1000-dimensional Lorenz 95 model, 20

particles were sufficient to capture the behaviour of the

true solution where as hundreds to thousands of particles

are needed with traditional particle filters (Van Leeuwen

2011). This shows there is the potential for particle filters

to represent the full posterior pdf with only relatively few

particles in large dimensional geoscience applications.

In this paper we explore the equivalent weights particle

filter in greater depth. We show how it relates to alternative

schemes which also utilise proposal densities and how

the proposal density can be designed to ensure that

particles have certain properties. In particular we look at

how, by combining different choices of proposal density,

the particle filter can result in the majority of particles

contributing significant information about the probability

area of the posterior pdf local to the observations. This
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results in a much smaller ensemble being required to give

an effective representation of the posterior pdf and leads to a

scheme which will scale well to high-dimensional systems.

Using the Lorenz (1963) model we demonstrate how the

representation of the posterior is sensitive to choices made

as part of the specified proposal densities. Provided the

right choices are made, the ability of the scheme to capture

the essence of the posterior using just 20 particles is

demonstrated.

2. Equivalent weights particle filter

2.1. Particle filters

We start by reviewing the basic particle filter and how

it can be adapted to allow for sampling from a proposal

density. In the most general form of the particle filter,

the posterior pdf can be considered as the distribution of

possible model trajectories over a period of time given

vectors of observations of the state. Using Bayes theorem

it can then be written:

p(x0:n|y1:n) =
p(y1:n|x0:n)p(x0:n)

p(y1:n)
(1)

where x0:n is a sequence of k-dimensional states of the

system (x0, x1, ...., xn) that gives the model trajectory over

the n time steps and y1:n is the set of observation vectors.

The probability distribution of the observations given a

particular trajectory, p(y1:n|x0:n), is the likelihood and is

generally considered to be a known Gaussian distribution,

although it is not restricted to this. The model prior, p(x0:n),

is the distribution of the model trajectories before the

observations are taken into account.

If it is assumed that the observations at different times

are independent and that p(yj |x0:n) = p(yj |xj), then the

posterior pdf becomes:

p(x0:n|y1:n)

=
p(y1:n|x0:n)p(x0:n)

p(y1:n)

=
p(yn|xn)

p(yn)

p(yn−1|xn−1)

p(yn−1)
...
p(y1|x1)

p(y1)
p(x0:n). (2)

Particle filters represent the model prior via Monte Carlo

methods as an ensemble of system state trajectories or

particles. Hence p(x0:n) is given by the sum of delta

functions positioned at the state trajectories chosen as the

particles:

p(x0:n) =
1

N

N∑
i=1

δ(x0:n − x0:ni ). (3)

Using the particle representation in Bayes theorem gives:

p(x0:n|y1:n) =

N∑
i=1

p(yn|xni )

p(yn)
...
p(y1|x1i )
p(y1)

1

N
δ(x0:n − x0:ni )

=

N∑
i=1

wni ...w
1
i

1

N
δ(x0:n − x0:ni ) (4)

where the weights wji are given by

wji =
p(yj |xji )
p(yj)

=
Np(yj |xji )∑N
i=1 p(y

j |xji )
. (5)

Since p(yj) =
∫
p(yj |xj)p(xj)dxj = 1

N

∑N
i=1 p(y

j |xji )

ensures normalised weights we have that wji ≤ 1,∀j =

1, ..., n. So for large numbers of observations the product

of the weights over all time steps can become very low. In

general it is found that only a few observations are required

before one ensemble member takes all the weight leaving

the rest to have negligible weight (Doucet et al. 2001;

Gordon et al. 1993). This means that only this one particle

has statistical significance in estimating the posterior pdf,

which then effectively becomes a delta function centered on

that state trajectory. This is known as filter degeneracy and

means the advantage of the particle filter in allowing for a
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4 M. Ades, P.J. van Leeuwen

full representation of the posterior pdf is lost. One way to

avoid filter degeneracy is to use resampling. Every time an

observation becomes available the weights are calculated.

Those particles with very low weights are then abandoned

whilst particles with high weight are kept and multiplied,

so that once again all particles have equal weight. Particle

filters that apply resampling are known as sequential

importance resampling (SIR) filters and several ways of

implementing resampling are available, see for example

(Gordon et al. 1993; Lui and Chen 1998; Kitagawa 1996).

Since resampling results in the trajectories of some

particles being curtailed, we can no longer consider

particles across the entire time window. Instead state

trajectories are now considered over the period between

observations, so the posterior pdf becomes the probability

distribution of these shortened trajectories given the latest

observation vector:

p(xn−r:n|yn) =
p(yn|xn)p(xn−r:n)∫

p(yn|xn)p(xn−r:n)dxn−r:n

=

N∑
i=1

wni
1

N
δ(xn−r:n − xn−r:ni ) (6)

where wni is as above and there are r steps from the

previous vector of observations. Unfortunately resampling

does not entirely solve the problem of filter degeneracy. It

is still a serious issue in particle filtering whilst computer

capabilities limit the number of particles that can be used

(Snyder et al. 2008). The equivalent weights particle filter

attempts to solve this problem.

2.2. Equivalent weights particle filter: basic ideas

The SIR filter gives a method for calculating the full

posterior pdf via the particle states and their associated

weights. However, in general it is of more interest to

determine the expectation value of a function of the state

vector:

g(xn−r:n)

=

∫
g(xn−r:n)p(xn−r:n|yn)dxn−r:n

=
1

A

∫
g(xn−r:n)p(yn|xn−r:n)p(xn−r:n)dxn−r:n (7)

where A is a normalisation factor. This integral can be

written as

g(xn−r:n) =
1

A

∫
g(xn−r:n)p(yn|xn−r:n)

p(xn−r:n)

q(xn−r:n)

× q(xn−r:n)dxn−r:n (8)

where q(xn−r:n) is another probability distribution called

the proposal density. This will not effect the expected value

provided that the support of q(xn−r:n) is larger than or

at least equal to the support of p(xn−r:n), thus avoiding

division by zero.

Rather than sampling particles from p(xn−r:n), we

now sample instead from q(xn−r:n) which can be chosen

arbitrarily. Replacing q(xn−r:n) in Eq. (8) above with our

Monte Carlo representation we find that:

g(xn−r:n) =
1

A

∫
g(xn−r:n)p(yn|xn−r:n)

p(xn−r:n)

q(xn−r:n)

× 1

N

N∑
i=1

δ(xn−r:n − xn−r:ni )dxn−r:n

=
1

A

N∑
i=1

g(xn−r:ni )p(yn|xn−r:ni )
p(xn−r:ni )

q(xn−r:ni )

=

N∑
i=1

wni g(xn−r:ni ) (9)

where the weights now include an extra term:

wni =
1

A
p(yn|xn−r:ni )

p(xn−r:ni )

q(xn−r:ni )
. (10)

Since the posterior pdf consists of both the particle

trajectories and their associated weights, the extra term in

the weight can be viewed as compensating for any change in
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the trajectories due to not sampling directly from the model

prior.

Other than requiring the support of q(xn−r:ni ) to be at

least equal to that of p(xn−r:ni ), no other restrictions are

placed on the proposal density. However since the aim is

to improve the likelihood, it would seem logical to include

the information from the observations as part of the density.

This can be done in several ways and, although this paper

does consider alternatives, its main focus is based on the

ideas that follow.

2.3. A sequential approach to the proposal density

Before discussing how we include observation information

in the proposal density it is necessary to note the sequential

nature of the model prior. Exploiting the Markov chain

property of the evolution of the model trajectory (e.g. Van

Leeuwen (2009)) it is possible to write

p(xn−r:n) = p(xn|xn−1)p(xn−1|xn−2)...

...p(xn−r+1|xn−r)p(xn−r). (11)

Each probability density p(xj |xj−1) is called a transition

density and relates to the probability of moving from one

state to the next in time. If f(xj−1i ) are the discretised model

equations applied to the model state at the previous time and

dβji is the stochastic error representing unknown terms in

the model equations, then the model state at the new time

step is given by:

xji = f(xj−1i ) + dβji . (12)

Although the distribution of the dβji can be chosen

appropriately for the model, if it is assumed to be Gaussian

with mean zero and covariance Q then the expected

value of the new model state given the old model state

xj−1i is f(xj−1i ) with covariance Q. Hence the transition

density is also distributed as a Gaussian, p(xj |xj−1i ) ∼

N(f(xj−1), Q). Obviously if the distribution of the dβji

is chosen differently, the related transition density will also

change.

The proposal density differs from the model prior since

we choose it to be based on observational information.

Whilst theoretically it is possible to have the proposal

density dependent on all observations, to improve the

likelihood of each particle only requires the proposal

density to be based on the next available observation. In

addition we choose the proposal density to have the same

Markov property as the model prior so that q(xn−r:n)

becomes:

q(xn−r:n, yn) = q(xn|xn−1, yn)q(xn−1|xn−2, yn)...

...q(xn−r+1|xn−r, yn)q(xn−r).

(13)

We choose this proposal transition density in a similar way

to the model transition density. Like the model prior it is

based on both the discretised model equations and includes

a stochastic error. The difference lies in an additional term

based on the future observation that works to relax the

particle towards that observation. Hence the new model

state at time j is now given by:

xji = f(xj−1i ) +B(τ)(yn − h(xj−1i )) +
ˆ
dβji , (14)

where B(τ) is a matrix specifying the strength of the

relaxation dependent on the distance in time τ to the next

observation and h(xj−1i ) is a measurement operator which

projects the model state on the observation yn, but at time

j − 1. If the random error ˆdβj is again distributed as a

Gaussian with mean zero and now with covariance Q̂, then

the proposal transition density is also Gaussian but now

with mean f(xj−1i ) +B(τ)(yn − h(xj−1i )). The proposal

covariance Q̂ can be chosen as one wishes but failing better

knowledge is currently kept to be the same as Q.
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6 M. Ades, P.J. van Leeuwen

This is a simple way to ensure that each particle ends

up close to the future observation by giving it a small

nudge at every time step. If a particle is close to the

observation then its likelihood p(yn|xni ) is high and the

hope is that it will now have significant weight in estimating

the posterior density. However, as already stated, sampling

from a proposal density rather than the model prior also

effects the composition of the weights. Accounting for the

sequential nature of both the model prior and the chosen

proposal density the weights are now given by:

wni =
1

A
p(yn|xni )

n∏
j=n−r+1

p(xji |x
j−1
i )

q(xji |x
j−1
i , yn)

. (15)

By sampling xji from q(xj |xj−1i , yn) rather than

p(xj |xj−1i ) at each time step, the probability p(xji |x
j−1
i )

is usually reduced. Hence p(xji |x
j−1
i ) is generally smaller

than q(xji |x
j−1
i , yn). Multiplied over several time steps this

can lead to a very small value for
∏n
j=n−r+1

p(xj
i |x

j−1
i )

q(xj
i |x

j−1
i ,yn)

and so, irrespective of the likelihood, the weight can

become very small. Filter degeneracy is still occurring

despite sampling from the chosen proposal density and an

additional step is needed.

2.4. Final proposal density

The choice of proposal density considered so far has been

designed to control the position of the particles and an

associated change in weight has therefore been calculated.

An equally valid alternative would be to decide upon

the desired weight for a particle and then design the

proposal density to ensure this weight. With this in mind

it is informative to look at previous and current ideas for

ensuring specific weights for particles before the ‘equivalent

weights’ scheme proposed by Van Leeuwen (2010) is

considered in more detail.

2.4.1. Optimal proposal density

This was discussed by Doucet et al. (2000) under the

title of importance sampling and it naturally falls within

the premise of proposal densities. Bocquet et al. (2010)

also study the optimal proposal density and show how it

outperforms the SIR filter on a Lorenz 95 example for a

small ensemble size. The aim is to avoid filter degeneracy

by using the proposal density to sample particles such that

the variance of the weights are minimised. For simplicity let

it be assumed that observations are available at every time

step. If particles are then picked from a proposal density, the

subsequent weight given to each particle is specified by:

wi =
1

A
p(yn|xni )

p(xni |x
n−1
i )

q(xni |x
n−1
i , yn)

(16)

similar to the sequential approach outlined above. The

suggested optimal proposal density is q(xn|xn−1i , yn) =

p(xn|xn−1i , yn). Using Bayes theorem and the fact that in

general the systems of interest can be considered to be

Markov,

p(xni |xn−1i , yn) =
p(yn|xn)p(xn|xn−1)

p(yn|xn−1)
. (17)

Hence the weights simplify to wi ∝ p(yn|xn−1i ). The

optimal proposal density is considered to be optimal since

there is zero variance in the weights for particles sampled

from a proposal density p(xn|xn−1i , yn) for a fixed value

of xn−1i . However the value of xn−1i is different for each

particle and so the zero variance in weights across the

proposal density for a fixed xn−1i is not utilised. This can

be seen if we return to the original specification of both the

likelihood and model transition density. If h(x) is linear

(represented here by H) and hence both p(xn|xn−1) and

p(yn|xn) are Gaussian distributed, the weights using this
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Equivalent weights particle filter 7

optimal proposal density are proportional to

wi ∝ p(yn|xn−1i )

∝ exp

[
−1

2
(yn −Hf(xn−1i ))(HQHT +R)−1

×(yn −Hf(xn−1i ))
]
. (18)

We wish to estimate the variance of this expression as the

ensemble index i varies. The arguments of Snyder et al.

(2008) can be applied here, but we chose to look at the

simple case where both R and HQHT are diagonal with

respective variances given by Vy and Vx. The expression

(yn −Hf(xn−1i )) can be expanded to ((yn −Hxnt ) +

Hdβnt +H(f(xn−1t )− f(xn−1i )), where xnt denotes the

true model state, and hence

− log(wi) ∝
1

2(Vx + Vy)

M∑
j=1

(
(yn −Hxnt ) +Hdβnt +H(f(xn−1t )− f(xn−1i )

)2
(19)

where M is the number of independent observations. The

variance of − log(wi) is given by

var[− log(wi)] ∝
M

2

(
Pnx

Vx + Vy

)2(
1 + 2

(
Vy + Vx
Pnx

))
(20)

where Pnx = HAPn−1ATHT with A the linearised model

equations and Pn−1 the ensemble variance at time n−

1 (see Appendix A for details). Assuming Pn−1, Vx

and Vy are fixed, this shows that the variance of the

weights is directly linked to M, the number of independent

observations. Regardless of this optimal choice of proposal

density, in reality filter degeneracy caused by significant

variation in the weights will still be present in the large-

dimensional geophysical systems of interest.

2.4.2. Implicit particle filter

Although Chorin and Tu (2009) adopt a different

formulation in the implicit particle filter, for observations

at every time step it is the same as the optimal proposal

density (Chorin et al. 2010; Morzfeld et al. 2012) and

so the variance of the weights will again increase with

the number of independent observations. To see why this

is true we start with the weights at observation time n

given by (16) for the simplest case of observations available

every time step. To try and ensure all samples have high

weights, Chorin et al. (2010) wish to use the proposal

density to sample particles from p(yn|xn)p(xn|xn−1i ) =

p(xn|xn−1i , yn)p(yn|xn−1i ) (see Eq. (17)). We have that

p(yn|xn)p(xn|xn−1i )

=
1

A
exp

[
−1

2
(yn −Hxn)TR−1(yn −Hxn)

−1

2
(xn − f(xn−1i ))TQ−1(xn − f(xn−1i ))

]
=

1

A
exp

(
−1

2
(xn − x̂ni )TP−1(xn − x̂ni )− φi

)
=

1

A
exp

(
−1

2
(xn − x̂ni )TP−1(xn − x̂ni )

)
exp (−φi)

= p(xn|xn−1i , yn)p(yn|xn−1i ) (21)

where

P−1 = HTR−1H +Q−1 (22)

x̂ni = P (Q−1f(xn−1i ) +HTR−1yn) (23)

φi =
1

2
(yn −Hf(xn−1i ))T (HQHT +R)−1

× (yn −Hf(xn−1i )) (24)

and x̂ni would be more commonly recognised in the Kalman

filter like form

x̂ni =f(xn−1i )

+QHT (HQHT +R)−1(yn −Hf(xn−1i )). (25)
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8 M. Ades, P.J. van Leeuwen

Particles can be sampled from p(xn|xn−1i , yn) ∝

exp
(
− 1

2 (xn − x̂ni )TP−1(xn − x̂ni )
)

by sampling a k-

dimensional Gaussian reference variable ξni from N(0, I)

and transforming via xni = P
1
2 ξni + x̂ni . This gives the

proposal density q(xn|xn−1i , yn) = p(xn|xn−1i , yn). The

weights now simplify to wni ∝ p(yn|x
n−1
i ) = exp(−φi).

Comparing the definition of φi to Eq. (18), the equivalence

of the two schemes when observations are available every

time step is immediately apparent. Hence, like the optimal

proposal density, the implicit particle filter cannot guarantee

the avoidance of filter degeneracy in large-dimensional

systems with large numbers of observations. When

observations are not available every timestep, calculating

the weights of the implicit particle filter is equivalent to

finding a solution to the weak constraint 4D-Var problem

with fixed initial conditions. It is currently unclear how

the formulation over multiple time steps will change these

estimates.

2.4.3. Equivalent weights

The equivalent weights proposal density, as specified in

Van Leeuwen (2010), uses the same principles as the above

schemes but tries to avoid the relation between the variance

of the weights and the number of independent observations.

The aim is to ensure equally significant particles are picked

from the posterior density. It is assumed that the particles

are already in the probability region of the posterior local to

the observations through the relaxation term included in all

the previous proposal densities. Hence the weight accrued

in all time steps prior to that immediately preceding an

observation is an inherent part of the scheme and we return

to the specification of the weights at observation time given

in (15).

Separating the weight accrued by each particle until the

last step before an observation, the final weight of a particle

is given by

wni =
1

A

n−1∏
j=1

p(xji |x
j−1
i )

q(xji |x
j−1
i , yn)

 p(xni |x
n−1
i )p(yn|xni )

q(xni |x
n−1
i , yn)

∝ wresti

p(xni |x
n−1
i )p(yn|xni )

q(xni |x
n−1
i , yn)

. (26)

The proposal density q(xni |x
n−1
i , yn) in the last time step

can be used to set wresti p(xni |x
n−1
i )p(yn|xni ) equal to a

constant. This is similar to the implicit particle filter but

rather than randomly sampling particles we now pick a

specific particle that will give us the desired weight. This

is equivalent to solving the equality given by

− logwresti +
1

2
(xni − f(xn−1i ))TQ−1(xni − f(xn−1i ))

+
1

2
(yn − h(xni ))TR−1(yn − h(xni )) = C. (27)

The value of C is chosen based on the maximum weight

each particle can achieve (Van Leeuwen 2010). Unless it is

chosen based on the lowest maximum weight, it will only

be possible to solve this equality for a certain percentage

of particles. However, that choice will lead to all weights

becoming equal to that of the lowest. Instead a compromise

can be reached between the percentage of particles kept and

the value of the weight, with those discarded as unsolvable

still returning via resampling. The effect of changing the

value of C, and hence the percentage of particles kept, is

discussed in Section 3.6.1.

One solution to this equality, where it is solvable, leads to

new model states for each particle at observation time given

by (Van Leeuwen 2010):

x∗i = f(xn−1i ) + αiK(yn −Hf(xn−1i )) (28)

where H is now our linear observation operator. This is the

same as Eq. (28) only now with the addition of αi, which

is used to ensure equal weights for the specified percentage

of particles rather than the minimum weight given by Eq.
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(28). αi solves the quadratic equation (30) and is given by

αi = 1±
√

1− bi/ai in which

ai = 0.5dTi R
−1HKdi (29)

bi = 0.5dTi R
−1di − C − logwresti (30)

K = QHT (HQHT +R)−1 (31)

di = yn −Hf(xn−1i ). (32)

Previously the negative root has been chosen for αi (Van

Leeuwen 2010), however the choice of root can have

a significant impact on the behaviour of the equivalent

weights step and this is explored in more detail in Section

3.3.

Unfortunately, by picking a specific particle there is no

stochastic dependency. This leads to a proposal transition

density equivalent to a delta function centered on the

deterministic value given by Eq. (31). The one restriction

placed on the proposal density is that its support needs to be

at least equal to that of the model prior. Since this is not true

of a delta function an additional stochastic term is added to

the equation:

xni = f(xn−1i ) + αiK(yn −Hf(xn−1i )) + ˜dβni . (33)

The final value for the weights is now given by:

wni =
wresti p(xni |x

n−1
i )p(yn|xni )

q(xni |x
n−1
i , yn)

∝ exp(−Ci)
q(xni |x

n−1
i , yn)

. (34)

where Ci is equal to C plus a perturbation due to the

addition of the random error ˜dβni . The value of the weights

using the optimal proposal density depends primarily on the

differences between p(yn|xn−1i ) for each particle. In the

equivalent weights particle filter, any difference in weights

is now due to the distribution of the proposal density in this

last step, and hence the distribution of ˜dβn.

If ˜dβn is chosen to be Gaussian with mean zero and

covariance Q̃ then once again the proposal transition density

is Gaussian with mean now given by f(xn−1i ) + αiK(yn −

Hf(xn−1i )) = x∗i . In order to ensure that the expected

change from this state is insignificant, the error covariance

can be chosen to be small. For example it could be set

proportional to the model covariance, Q̃ = γ2Q, where

γ is a small dimensionless number, as was originally

suggested in Van Leeuwen (2010). However it transpires

that regardless of the value of γ, choosing the proposal

transition density as a Gaussian can lead to filter degeneracy.

If γdβni = ˜dβni ∼ N(0, γ2Q), where dβni ∼ N(0, Q)

and γ is sufficiently small, then the dominant terms when

calculating the weights are:

− logwni ≈ C −
1

2
dβni

TQ−1dβni (35)

(see Appendix B for details). Since there is no dependence

on γ in the above expression, the size of dβni controls the

value of the weight. An outlier from N(0, Q) will reduce

− logwni leading to a significantly larger weight, regardless

of the value of γ. Filter degeneracy may once again occur.

Ideally, all weights should be approximately equal. This

requires both q(xn|xn−1, yn) to be close to a constant,

regardless of the model state sampled, and the model state

not to change significantly. One distribution that would

fulfil these criteria is a Uniform distribution over a small

interval. Unfortunately, similar to the delta function of the

deterministic solution, a Uniform distribution does not have

support equal to or greater than the Gaussian distribution

p(xn|xn−1i ).

A solution is to use a mixture density so that

q(xni |xn−1i , yn)

= (1− ε)Q 1
2U [x∗i − γUI, x∗i + γUI] + εN(x∗i , γ

2
NQ)

(36)
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10 M. Ades, P.J. van Leeuwen

where I is a k dimensional vector of ones with k the

dimension of the system. Since a multivariate uniform

distribution does not exist, this equates to choosing a

uniform random variable for each dimension of the state

from the range given by plus and minus γU . These uniform

random variables are then multiplied by Q
1
2 to introduce

correlations between these variables. Using a mixture

density means the error can be drawn from either a Uniform

distribution or a Gaussian distribution with the proportion

controlled by the value of ε. Choosing ε to be small ensures

that in general xni are picked from a uniform distribution.

In particular by relating ε to the size of the ensemble, for

example ε = 0.001/N , means that drawing xni from the

Gaussian distribution is very unlikely even as the ensemble

size increases and hence equivalent weights can be assured

for all particles. However unlike using a purely Uniform

distribution, the possibility of picking from the Gaussian

ensures continuous support across the entire space of xni .

Appendix D gives further guidance on the relation between

γN , γU and ε.

2.4.4. Discussion

The ideal particle filter would concisely represent the

posterior distribution p(xn|yn) with only a few particles.

In geophysical applications, with a large number of

observations, the likelihood is very localised in state space.

The prior distribution has a much larger spread due to the

non-linearities present in most geophysical equations. In

order to gain information about the posterior density in

the state space local to the observations we wish to only

sample particles from this region. We also require particles

to have equal significance in order to avoid filter degeneracy.

The optimal proposal density, the implicit particle filter and

the equivalent weights particle filter all sample particles

from proposal densities to try and ensure particles with

these properties. The optimal proposal density aims to

sample particles with minimally varying weights and the

implicit particle filter from the region of the posterior local

to observations, however the schemes are the same for a

linear H and Gaussian distributed observation and model

transition densities when observations are available at every

time step. Furthermore the variance of the weights increases

with the number of independent observations so both will

ultimately suffer from filter degeneracy. The equivalent

weights particle filter combines these two aims. It uses

the proposal density in the majority of time steps to relax

each particle towards the probability region of the posterior

local to the observations and then the equivalent weights

step ensures equally significant particles. Since the proposal

density in the equivalent weights step is chosen as a mixture

density, there is not the cancellation in the factors of the

weight as occurs in the optimal proposal density. Hence

the variance is unrelated to the number of independent

observations and there is not the same potential for filter

degeneracy to occur.

It is also worth noting here the differences in

computational expense between the schemes. As already

mentioned, calculating the weights of the implicit particle

filter applied over multiple time steps between observations

is equivalent to weak constraint 4D-Var with fixed initial

conditions. This requires inner and outer loop iterations

for each particle which gets increasingly costly as the

dimension of the system and the number of particles

increases. In contrast calculating the weights in the

equivalent weights particle filter requires inverting two

matrices, Q and (HQHT +R), and a subsequent matrix

vector multiplication at each time step. Although the size of

the matrices will increase with the dimension of the system,

they must only be inverted once and are the same for each

particle. Hence the main computational increase from the

SIR filter is the matrix vector multiplication.
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2.5. Convergence of the scheme

The final section in this theoretical consideration of the

equivalent weights particle filter discusses the convergence

of the scheme as the number of particles grows. With the

SIR filter, as the number of particles approaches infinity, the

posterior distribution becomes the true posterior distribution

of the system (Doucet et al. 2001). It is desirable to retain

this property as the SIR filter is adapted to make it usable

for high-dimensional systems.

Theoretically, a particle filter which uses a proposal

density will still converge to the true posterior as the number

of particles approaches infinity. However the application

of the equivalent weights scheme to only a specified

percentage of particles in the final proposal density, means

the convergence of the scheme is no longer clear. One

solution would be to adapt the proposal densities so that

as the number of particles grows the scheme reverts back

to the SIR filter. For example this could involve including

a factor of 1000/(1000 +N), where N is the total number

of particles, as part of the relaxation term in the majority

of proposal densities and as part of αi in the equivalent

weights step. This would also require both the ε and γN

of the mixture density to tend to one as N increases. This

has not been implemented in the following example since

here the aim is to demonstrate the ability of the equivalent

weights particle filter to represent the posterior with only a

few particles.

3. Application to the Lorenz-63 model

The efficiency of the equivalent weights particle filter to

estimate the ensemble mean has already been demonstrated

by applying it to the Lorenz (1963) model (Van Leeuwen

2010). Here a more detailed examination is made of how

well the scheme manages to succeed in representing the

posterior pdf with a relatively small number of particles.

In particular the effects of changing some of the particular

choices within the scheme are explored in detail.

3.1. Model specification

We use the standard parameters σ = 10, ρ = 28 and β =

8/3 and assume Gaussian distributions with a standard

deviation of
√

2 for both the observation and initial model

error. The starting point is (1.508870, -1.531271, 25.46091)

and this is perturbed using the initial model standard

deviation to form the ensemble of particles. The model error

distribution is taken as a Gaussian with a standard deviation

of
√

2∆t, where ∆t = 0.01, multiplied by a correlation

matrix Q̃ which has 1 on the diagonal, 0.5 on the first

sub- and super-diagonals and 0.25 on the second sub- and

super-diagonals. A truth scenario is generated by solving the

stochastic model with the above parameters using the Euler-

Maruyama time discretisation scheme and values from this

truth run are taken every 40 times steps. Random noise is

added to these values using the standard deviation given

above to generate the observations.

3.2. Relaxation proposal density

The equivalent weights particle filter uses two distinct

proposal densities. The first relaxes the particles towards

the observations, and hence to the localised region of the

posterior, over the majority of time steps. As outlined in

Section 2.3, we update the model state for these time steps

according to

xji = f(xj−1i ) +B(τ)(yn −Hxj−1i ) +
ˆ
dβji (37)

where τ increases linearly from zero at the previous

observation time to one at n and with the random

Gaussian error ˆ
dβji having the model standard deviation and

correlation given above. The first choice to be explored is

the function B(τ) and here we consider the effect changing

this function has on the ensemble of particles.

The function B(τ) has two primary purposes. Its first

purpose is to control the strength with which each particle is

pulled towards the observations and its second is to spread
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12 M. Ades, P.J. van Leeuwen

this information to unobserved variables. Spreading the

information is achieved by including the model correlation

matrix Q̃ along with HT and this should form part of the

function regardless of how strong the relaxation is chosen

to be. The simplest way of relaxing towards the observation

would be to use a linear function that increases with τ ,

however applying this from the start of the analysis window

immediately starts to restrict the movement of each particle

as determined by the model equations. A more sensible

choice would be to start the linear increase from half way

between the two observations, thus allowing the ensemble

more freedom to initially spread out due to the random

forcing. Figure 1 shows the effect of two different choices

for B(τ) on both the trajectories of the particles and their

ability to represent the true posterior pdf. B1(τ) uses the

linear increase from half way between the two observations

multiplied by 25 times the model correlation matrix. B2(τ)

is given by

B2(τ) =


0 if τ < 0.6

40p(τ)Q̃HT if τ ≥ 0.6 and f(xj
i )−x

j
i

h(xj
i )−yn

> 0

4p(τ)Q̃HT if τ ≥ 0.6 and f(xj
i )−x

j
i

h(xj
i )−yn

< 0.

where p(τ) = −8.9(τ − 0.9)2 + 0.8.

The main difference between the two versions of B(τ)

lies in the trajectories of the particles. B1(τ) always applies

a relaxation, regardless of the movement already induced by

model equations. Hence it can relax too strongly towards the

observation. In contrast B2(τ) is a conditional function that

applies a much weaker relaxation towards the observation if

the particle is already moving in that direction via the model

equations. Hence the trajectories using B2(τ) bear a much

stronger resemblance to the truth (Figure 1).

Another consequence of using a linear function is that

since the relaxation is strongest immediately prior to an

observation, the ensemble gets less diverse as the particles

approach the analysis time. If instead the relaxation term

decreases in the final few time steps then dispersiveness

is re-introduced, although the particles still remain in the

vicinity of the observation. This is realised in function

B2(τ) via p(τ), a negative quadratic over τ with a

peak relaxation centred at 0.9 of the distance between

observations. The factors of 40 and 4 included in B2(τ)

have been chosen rather arbitrarily, but the results seem

insensitive to variations of the order of 10-20%.

One final observation is in order. The majority of this

paper explores the ability of the equivalent weights particle

filter to represent the posterior pdf, since this is ultimately

what particle filters are trying to achieve. Provided the

relaxation proposal density ensures the particles are in the

general vicinity of the observations, the exact choice of

B(τ) has little notable effect on the representation of the

posterior using only a small number of particles (Figure

1). The final equivalent weight proposal density, which

is considered in the remainder of this paper, has a much

stronger influence on the representation of the posterior

pdf. However, since we wish to retain as much model

information as possible moving into the equivalent weights

step, we have chosen to use B2(τ) throughout the rest of

this paper.

3.3. Choice of root for αi

We now move on to considering the choices made as part of

the equivalent weights proposal density. The first question

to answer is whether the positive or negative version of

αi = 1±
√

1− bi/ai should be used, where αi dictates

the movement of each particle away from its minimum

such that − logwi attains the specified value for C (Section

2.4.3).

Before the question is answered, it is informative to

look at the distribution of weight related to the use of

the equivalent weights step. In the SIR filter the value

of the weight is controlled by the likelihood, or the

distance between a particle and the observations. However
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Figure 1. The left column shows the trajectories of particles (blue) compared to the truth (green) between time step 681 and 721 for two different
versions of B(τ) (see text). The right column shows the posterior pdfs for the truth (blue) compared to that generated by the equivalent weights particle
filter (red) using 20 particles with the observation (red cross) and truth run (green cross) marked. The truth pdf has been generated using 1000 particles
and the standard particle filter. B(τ) is the only choice varying between the two different versions. Although the trajectories differ substantially when
different versions of B(τ) are used, their representations of the posterior pdf are similar.

in the equivalent weights particle filter the weights include

additional components and hence making the weights

lower than optimal does not necessarily imply an increase

in the distance to the observations. Ignoring for now

the proposal density in the last time step, the weights

at observation time in the equivalent weights particle

filter are given by wi = wresti p(xni |x
n−1
i )p(yn|xni ). The

weights now depend on the weight accrued from the

previous relaxation proposal densitieswresti , the final model

transition density p(xni |x
n−1
i ) as well as the likelihood

p(yn|xni ). Decreasing the value of the weights equates to

increasing the value of minus the logarithm of the weights:

− logwresti +
1

2
(x∗i − f(xn−1i ))TQ−1(x∗i − f(xn−1i ))

+
1

2
(yn −Hx∗i )TR−1(yn −Hx∗i ). (38)

where the three distinct terms relate to the three constituent

parts of the weight and x∗i is as defined in Eq. (31). It is

clear from Eq. (41) that another alternative for decreasing

the weight of a particle is to move x∗i away from its

deterministic position f(xn−1i ).

For the Lorenz 63 system studied it was found that

the move away from the deterministic position was more

influential in reducing the weight than the distance to the

observations, regardless of the version of αi used. This

is verified in Figure 2 which shows bars representing the

value of − logwi for each of 20 particles using both the

positive and negative versions of αi, with C chosen such

that 80% of particles are kept. Each bar is divided into

three sections; − logwresti (blue), the value from the model

transition (green) and the value from the likelihood (brown).

The inclusion of 80% of particles is evident since 16 of
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Figure 2. The value of − logwi of each particle using the two
different versions of αi at time step 641 in a 20 particle run of the
Lorenz 63 model with one observation and C chosen so that 80%
of particles can achieve that value. In each figure the bars represent
the total value of − logwi for each particle and the colours show
how the value is divided between − logwrest

i (blue), the transition
(green) and the likelihood (brown). That 20% of the particles are
unable to achieve − logwi = C is evident in the 4 particles with
bars higher than the majority. These will be resampled, returning as
duplicates of random choices from amongst the 16 particles.

the 20 particles have bars of equal height and hence the

same value of − logwi. The remaining four particles have

bars which are higher than the majority and which consist

mainly of value coming from − logwresti . These will never

be able to achieve the value of C and so will be resampled,

returning as duplicates of random choices from the 16

particles. For the rest of the particles it is the transition value

(green) that dominates in increasing the value of − logwi

to C. This is a significant point, since if the transition

density has more impact than the likelihood then it is more

important that the movement by particles is away from

the deterministic position f(xn−1i ) than the observations.

This means particles can move towards the observations,

and by assumption the truth, and still achieve the weight

required, provided the movement is such that the particle

is sufficiently far from its deterministic model state. Hence

ideally αi needs to be chosen such that the movement by the

particles is towards the observations.

If the deterministic movement by each particle under

the equivalent weights proposal density is given by Eq.

(31) then a positive αi is required to ensure movement

towards the observation. The negative form of αi = 1−√
1− bi/ai requires

√
1− bi/ai < 1 in order for αi to

be positive. For the scalar case of only one variable being

observed, this can be related to a bound on the difference

between C and − logwresti . Combined with the bound

required for real roots this gives:

d2i
2(Vx + Vy)

≤ C −
(
− logwresti

)
<

d2i
2Vy

(39)

where di = yn −Hf(xn−1i ) and Vx and Vy are the scalar

values of HQHT and R (see Appendix C for a derivation

of this result). For Vy much larger than Vx, as is generally

assumed, this gives a very small bound on the difference

between C and − logwresti for αi to be positive. In general

it was found that the difference between C and − logwresti

was outside these bounds with the negative version of αi.

In comparison the positive form of αi = 1 +
√

1− bi/ai

will always be positive and hence ensure a move towards

the observation. Although these bounds have only been

determined for the scalar case, the argument for the positive

form of αi can be validated graphically for a greater number

of observations (Figure 3). Similar behaviour was observed

at every time step studied. Hence it can be concluded that

in general the positive version of αi leads to a move by

particles towards the observation. Therefore the positive

version of αi is used from now on.
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Figure 3. Movement of the x-variable of each particle in a 20
particle run of the Lorenz 63 model at time step 281 for the positive
(3(a)) and negative (3(b)) version of αi. The red lines represent
the movement by the particles for the purely deterministic model
equations. The blue lines are the movement after equivalent weights
has been applied and the green line the truth run from which the
observation (red cross) was generated. The value of C was chosen
so that 80% of particles could achieve that weight and all variables
were observed.

3.4. Model balance issues

The above section highlights the importance of the change

in model state in achieving weights that are equivalent.

This movement by each particle has positive and negative

connotations for the performance and validity of the

equivalent weights particle filter. Since the transition weight

dominates, allowing movement by the particles closer to the

observation, the movement often has positive impact on the

distribution of the ensemble.

The potential downside to the movement induced by

equivalent weights relates to possible balances in a system.

Unfortunately it is not possible to explore this issue with

the Lorenz 63 model and so further work needs to be

undertaken to understand the exact impact introducing

additional terms to the model equations has on known

variable relationships. For the majority of time steps

between observations, where the movement by a particle is

increasingly relaxed towards the observations, it is likely

that the strength of the relaxation can be controlled so

that in general the model equations dominate and the

balances are maintained. However the larger movement

caused by the addition of equivalent weights can be more

problematic, although it may not have quite the potential

to be an issue that Figure 3 would imply. It was found

in the Lorenz 63 system that as the number of variables

observed was increased the movement seen in any one

variable became much less distinctive. The Lorenz 63

system has only three variables and so at most only three

observations. It may be that in a higher dimensional system,

with observation vectors of much greater dimension, much

smaller movements of the particles have a larger effect on

the weights and so balance issues are less of a problem.

Another alternative would be construct both B(τ) and Q

in the equivalent weights step such that they project the

model states onto a balanced manifold, similar to the B

matrix in 4DVar or initialisation in the EnKF (Houtekamer

and Mitchell 2005; Buehner et al. 2010). We will explore

this issue in more detail using higher dimensional models

in future papers.

3.5. Mixture density

The next parameters to be discussed relate to the full

equivalent weights proposal density rather than its initial

deterministic move. The full proposal density is given in

Eq. (39) and has the associated parameters γU , γN and

ε. The parameter ε controls the proportion of particles

which are sampled from the Uniform distribution as

opposed to the Gaussian distribution, γU the width of the

uniform distribution and γN the variance of the Gaussian

distribution. The idea is that by keeping ε small, the

probability of sampling from the Gaussian is kept to a

minimum and filter degeneracy is avoided. Figure 4 shows

the effect on the distribution of maximum weights of

increasing the value of ε so that particles start to be sampled

from both distributions. The remaining two parameters, γU

and γN , are kept constant with γU = 10−5 and γN related
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to γU via γN = 2k/2ε(πk/2(1− ε))−1γkU (see Appendix D

for details).
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Figure 4. Empirical statistics of the maximum weights of the particles
over 2000 observation times using 100 particles for varying values of ε.
Increasing ε results in a greater number of particles being sampled from
the Gaussian part of the mixture density, leading to more cases of filter
degeneracy.

For ε = 0.01 the density is rather balanced with only

a few instances of filter degeneracy. As the value of ε is

increased, the probability of sampling from the Gaussian

part of the mixture density rises and the weights become

more degenerate. This figure verifies the results from

Appendix B, which shows a theoretical justification of why

sampling from a Gaussian distribution in the final proposal

density is likely to lead to filter degeneracy. To ensure

that the probability of sampling from the Gaussian part of

the mixture density is minimised, ε has been set equal to

0.001/N for the rest of the experiments, where N is the

number of ensemble members.

Changing the variable γU has no effect on the value

of q(xni |x
n−1
i , yn) (again see Appendix D). However,

increasing γU results in particles being sampled from a

Uniform distribution with a greater range. In turn this moves

the particle further from the position required to ensure

that − log
[
wresti p(xni |x

n−1
i )p(yn|xni )

]
= C. In effect γU

controls the variance of p(xni |x
n−1
i )p(yn|xni ) and hence we

wish to choose it to be small (γU = 10−5) to ensure the

weights are all equivalent.

3.6. Percentage of particles retained under equivalent

weights

The conclusions reached so far on the choices of B(τ), αi,

γU , γN and ε are relatively generic. Although they all need

to be verified and explored in higher dimensional models

it is likely that a relaxation function that allows the model

movement to dictate the strength of the pull, a positive

αi that is more likely to ensure the ensemble surrounds

the observation or an ε chosen small enough that all

particles have equivalent weights, will be beneficial choices

regardless of the model. The next variable to be considered

is the percentage of particles that should be retained under

the equivalent weights step. Here the arguments are much

less theoretical and so become more dependent on the

Lorenz 63 model used to generate the results. Verifying

the performance of the particle filter also becomes harder.

Changing the percentage of particles retained effects the

distribution of the posterior representation, and for a non-

Gaussian distribution this is a difficult measure to judge.

The advantage of using the Lorenz 63 model to explore

this issue is that it is of small enough dimension to enable

an approximation to the truth posterior to be generated

using 1000 particles and the SIR filter. Here we use several

different methods to draw conclusions on the equivalent

weights particle filter. The first is a visual and statistical

comparison of the individual posterior pdfs generated by

the equivalent weights particle filter compared to the

approximation of the true posterior generated by the SIR

filter. However these only assess performance at individual

time steps and so rank histograms (Hamill 2000) and root

mean square errors have been used to verify the results over

multiple observation times.

3.6.1. Representation of posterior pdfs

In general the equivalent weights particle filter shows a clear

improvement over the SIR filter in capturing the essence

of the posterior. Figure 5 shows the posterior pdfs of a
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Figure 5. The posterior probability density functions for the (a) SIR filter,
(b) a particle filter which just relaxes towards the observations and (c) for
the equivalent weight particle filter with 80% of particles kept, at time step
1321 and with observations of the x-variable only. The blue bars are the
result of a 1000 particle run with the SIR filter and the red bars represent
the result from each scheme with only 20 particles. The SIR filter clearly
misses the mean given by the 1000 particle run. Just relaxing towards the
obs brings the mean of the 20 particle posterior closer to the true pdf
mean but in no way captures the spread of the pdf. The equivalent weights
particle filter not only ends up close to the mean but also captures some of
the spread of the true pdf.

20 particle ensemble run using the SIR filter, a particle

filter which just relaxes towards the observations and the

effect of both relaxing and applying equivalent weights

when 80% of particles are kept. The red bars show the

histogram of the x-variable of the particles at time step 1801

and the blue bars the results from a SIR filter using 1000

particles. Applying the equivalent weights step provides a

clear improvement over both the other schemes. The SIR

filter with 20 particles fails to capture the mean of the

1000 particle pdf and suffers from filter degeneracy since

only two particles are present after resampling. If equivalent

weights is not included then the pdf gets closer to capturing

the mean but filter degeneracy means that again none of

the shape of the blue pdf is seen. In the equivalent weights

scheme not only is the mean captured but also some of the

spread of the pdf.

Particle filters are preferable over other data assimilation

schemes since they allow for both multi-modal prior and

posterior distributions. In the Lorenz 63 system it was found

that when using 20 particles with the equivalent weights

particle filter, the support of the 20 particles in general

matched the support of the full 1000 particle run from the

SIR filter, regardless of the shape of either the prior or

posterior distributions. Although the full posterior seems to

tend towards a Gaussian, Figure 6 shows various ‘true’ prior

distributions at different time steps, concurrently with the

full posterior and 20 particle representation. It is evident that

not only does the equivalent weight particle filter ensure a

good support in comparison to the full posterior distribution

for a Gaussian prior, but also for skewed or multi-modal

priors.

3.6.2. Increasing the percentage of particles retained

Although these results are very promising, the percentage

of particles retained has an impact on the ability of the

equivalent weights particle filter to effectively represent

the posterior pdf. The higher the percentage of particles

included under the equivalent weights scheme, the further

each individual particle will have to move from its

deterministic position to ensure its weight matches that

specified. This effect is demonstrated in Figure 7, which

shows the posterior pdfs using 20 particles for time step

1881 as the percentage of particles kept is increased. At
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Figure 6. The prior and posterior pdfs at three different timesteps where observations of the x-variable only have been used. The blue bars represent the
‘true’ pdf and are calculated using 1000 particles and the SIR filter. The red bars on the posterior are from the equivalent weights particle filter using just
20 particles and with 80% of particle retained under equivalent weights. Regardless of the shape of the ‘true’ prior pdf, the equivalent weights particle
filter is able to match the support of the full posterior pdf.

70-80%, the equivalent weights particle filter provides a

relatively good match to the posterior pdf of the SIR filter.

However as the percentage increases to 100% the effect

of the larger movement is seen in the reduced numbers of

particles close to the observation. This verifies that making

all weights equal to that of the worst particle, and hence

retaining 100% of particles, does not in general lead to

the best representation of the posterior. Including less than

70% of particles has not currently been examined since the

idea is to ensure equivalent weights for the greatest possible

number of particles.

Table I shows the statistics of the true posterior pdf

compared to the posterior pdfs produced by the equivalent

weights particle filter at the same time step. As would be

expected, the statistics verify the results seen in the Figure

7. In particular the larger movement by the particles, when
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Figure 7. Posterior pdfs at time step 1881 with one observation for
an increasing percentage of particles kept in the equivalent weights
scheme. The blue bars come from a 1000 particle run with the SIR
filter and the red bars are from the equivalent weights scheme with 20
particles. As the percentage of particles kept reaches 100% the pdf
becomes less similar to the 1000 particle run due to the increased
movement of the particles.

mean var skewness kurtosis
Truth -12.78 1.32 0.33 3.25
70% -12.90 0.43 0.11 2.68
80% -12.95 0.58 -0.48 2.85
90% -12.37 11.58 -0.18 1.52

100% -12.24 20.03 0.04 1.43
Table I. The statistics of the posterior pdfs at time step 1881 with one
observation and 20 particles for an increasing percentage of particles
kept in the equivalent weights scheme. Although the mean stays fairly
stationary, the variance increases and the kurtosis decreases as the
percentage of particles retained moves towards 100%.

a higher percentage are retained, can be seen through the

increase in variance and decrease in kurtosis whilst the

mean stays fairly stationary.

The additional movement caused by retaining a greater

percentage of particles can also be seen over multiple

time steps in the rank histograms, which score where the

truth ranks in the ensemble (Figure 8). The standard and

relaxation only particle filter schemes clearly have a U-

shape, indicating that the ensemble is under-dispersive.

When 70% of particles are kept through equivalent weights

a U-shape is still clearly evident. As the percentage of

particles retained is increased the ensemble becomes more

uniform. When 100% are kept the histogram has a humped

shape indicating possible over spreading of the ensemble.

As the percentage of particles that are kept increases,

the ensemble becomes more likely to split around the

observation (Figure 7) and hence the truth. This is reflected

over multiple time steps by the over-dispersion seen in the

rank histograms.

The results shown here over all percentages might

initially be considered to be in contrast to those given in

Figure 7, which shows a good spread of the ensemble

around the truth, regardless of the percentage of particles

retained. However Figure 7 shows just one time step

specifically chosen to demonstrate the movement by

particles, whereas Figure 8 is a measure over 80,000 time

steps and shows a more generalised trend.
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Figure 8. Rank histograms for the x-variable with one observation
run over 80,000 time steps for different Particle filter schemes and
compared to the truth. Both the standard and relaxation only particle
filters are under dispersive as shown by the distinctive U shape.
Although this shape can still be seen for the equivalent weights
scheme with 70% of particles kept, as the percentage of particles
increases the spread improves until with 100% the truth is more
likely to fall in the centre of the ensemble.

3.6.3. Increasing the size of the ensemble

As the size of the ensemble is increased, the conclusions

drawn on the effect of retaining a greater percentage

of particles change very little. Since all particles relax

towards the observation, increasing the number of ensemble

members does not lead to the same increase in variance as

would be expected when using the SIR filter. This can be

seen pictorially in Figure 9, which shows the posterior pdfs

when 80% of particles are retained under the equivalent

weights step as the number of particles is increased, again

% N mean var skewness kurtosis
Truth -12.78 1.32 0.33 3.25

70
20 -12.90 0.43 0.11 2.68

100 -12.82 1.09 1.76 7.48
1000 -12.90 0.64 0.88 5.23

80
20 -12.95 0.58 -0.48 2.85

100 -12.48 1.66 2.07 7.73
1000 -12.77 0.79 1.47 7.34

90
20 -12.37 11.58 -0.18 1.52

100 -12.11 1.89 2.19 8.55
1000 -11.55 5.92 -0.82 2.15

100
20 -12.24 20.03 0.04 1.43

100 -11.06 29.24 -0.48 1.44
1000 -11.89 40.41 -0.12 1.18

Table II. The statistics of the posterior pdfs at time step 1881 with one
observation and 20 particles for an increasing percentage and number
of particles in the equivalent weights scheme. No discernible pattern is
created by increasing the number of particles (N). The biggest effect
on the statistics of the equivalent weights posterior pdfs is still from
changing the percentage of particles retained.

at time step 1881. Studying the statistics for the same

time step as both the percentage and number of particles

is increased (Table II) gives a similar pattern. Apart from

the 100 particle run with 90% of particles retained, the

significant changes in variance are seen as the percentage

of particles is increased rather than with greater ensemble

size across a particular percentage of particles. Less clear is

the reduction in kurtosis with percentage rather than number

of particles, although this is at a minimum when 100% of

particles are retained. Interestingly the mean stays relatively

consistent regardless of percentage or ensemble size. This is

evident not just for time step 1881, but also over all times

steps and all variables by considering the root mean square

errors (Table III). Although the root mean square errors

increase when 100% of particles are retained, there is no

discernible pattern for 70-90% of particles or as the the

ensemble size gets larger.

3.6.4. Changing the statistics, frequency and number of

observations

The majority of the discussion in the previous sections has

focussed on the effect changing the percentage of particles

retained has on the posterior pdf, since the trajectories of

the particles remain unaffected. Changing the frequency
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Figure 9. Posterior pdfs at time step 1881 with one observation for
an increasing number of ensemble members. The blue bars come
from a 1000 particle run with the SIR filter and the red bars are from
the equivalent weights scheme with 80% of particles kept.

N 70% 80% 90% 100%
20 20.44 18.35 20.90 23.85
100 20.70 19.30 20.02 22.46

1000 19.15 19.44 18.70 25.41
Table III. Root mean square error over a 2000 model time step run
comparing all three variables to the truth generated as part of the
twin experiment. For comparison the rmse of the 1000 SIR filter truth
distribution is 15.98. No pattern is apparent as the percentage retained
or number of particles is increased, although retaining 100% of particles
does lead to a worse rmse.

of observations, however, has the largest impact on the

trajectories of the particles. Doubling the distance between

observations from 40 to 80 time steps means that there is

now only one or two observations per cycle of the Lorenz

63 system. If one observation has a slight but significant

perturbation from the truth at the start of a cycle, then the

particles can all move to the opposing wing of the butterfly.

The lack of observations over the remaining duration of the

cycle can lead to the particles remaining separated from the

truth until the next observation (Figure 10).
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Figure 10. The trajectories of 20 particles (blue) compared to the true
trajectrory (green) with observations (red) every 40 (a) and every 80 (b)
timesteps. If observations are available every 40 timesteps then the particle
trajectories are able to follow the truth whereas with observations every 80
timesteps the particles miss the true transition to the opposite side of the
Lorenz attractor.

Returning to the posterior pdfs, it is evident that changing

the frequency of the observations has little effect on the

statistics of the posterior pdfs (Figure 11). There are

larger differences in variance between the true distribution

and the equivalent weights ensemble posterior as the

frequency of observations increases, specifically there are

more cases of the ensemble variance being larger than

than the true variance, but no obvious relationship emerges.

The differences in mean, skewness and kurtosis are also

clearly effected by a greater number of timesteps between

observations, however again no relationship is evident.
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Since the relaxation proposal density ensures the particles

end up close to the observations, regardless of their

frequency, the ability of the equivalent weights particle filter

to replicate the true posterior pdf does not appear to be

related to the number of timesteps between observations.

Increasing the percentage of particles retained under the

equivalent weights step still leads to the same increase in

variance and distinctive splitting behaviour demonstrated in

Figure 7, regardless of the frequency of observations.
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Figure 11. The mean, variance, skewness and kurtosis of the true
distribution minus the ensemble distribution over 25 observation times for
observations every 20, 40 and 80 timesteps. No clear relationship is seen
between the number of timesteps between observations and the ability of
the equivalent weights particle filter to replicate the true distribution.

Changing the size of the standard deviation of the

observations also appears to bear little relationship with the

ability of the equivalent weights to represent the posterior.

Since we return to observations every 40 time steps and

R plays no part in the relaxation proposal density, the

trajectories of the particles are unaffected by any changes to

observation variance. Similarly changing the variance in R

has no effect on the equivalent weights proposal density, the

value of αi simply changes to compensate for the reduction

or increase in observation variance and no change is seen

in x∗i . There is a slight effect to the value of C, which each

particle is trying to achieve (Eq. (30)), but this was not noted

to have a significant impact on the posterior distribution.

There was some evidence to suggest that retaining a greater

percentage of particles provides a closer match to the

increased true variance of the posterior as a result of a

higher observation variance. This would be due to the

increased movement, and hence ensemble variance, as the

percentage of particles kept is increased. However since the

link is tenuous and the splitting behaviour associated with

retaining 100% of particles was still observed at a number

of observation time steps, this is not discussed further.

Increasing the number of variables that are being

observed has a much more noticeable effect on the

dispersiveness of the posterior pdf, both in terms of

the variances for individual posterior pdfs and for the

rank histograms over multiple time steps. With increasing

numbers of observed variables, the variance at individual

time steps is consistently closer to the variance of the

true posterior pdf over the first 50 observation times

(Figure 12). This is true regardless of the percentage

of particles retained, although keeping 100% of particles

still leads to a greater ensemble variance compared to

the true variance at an increased number of time steps

when all three variables are observed. Over 80,000 time

steps this reduction in variance leads to a U-shape in the

rank histograms regardless of the percentage of particles

retained. This supports the arguments made in Section 3.4,

that increasing the number of variables observed decreases

the movement required by each individual particle which

is encouraging in relation to balances. It does, however,

imply that the ensemble becomes less dispersive with

increasing numbers of observations. One possible method

of increasing the spread of the ensemble would be to change
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the proposal density at the majority of time steps. For

example the relaxation term could be reduced or the random

error dβj increased.
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Figure 12. The ‘true’ variance from the SIR filter using 1000 particles
minus the variance from the 20 particle equivalent weights particle filter
as both the percentage of particles retained and the number of variables
observed are increased. The black dashed zero line shows where the ’true’
and ’ensemble’ variance are the same, points above this imply the ensemble
is less variable than the truth and below the ensemble is more variable. As
the percentage of particles retained is increased, the equivalent weights
particle filter ensemble tends to become more variable than the truth
regardless of the number of variables observed however observing three
variables consistently leads to less variance. In order to keep the scales the
same and retain the detail in the lower percentage cases, some of the peaks
have been omitted in the 100% case.

3.6.5. Discussion

In this section of the paper the performance of the equivalent

weights particle filter is examined in detail as the various

parts of the scheme are changed. The necessity of choosing

the equivalent weights proposal density as a mixture

density, rather than a Gaussian, is demonstrated as well

as the benefit of choosing the positive version of αi. The

change in the trajectories of the particles from using a

simple B(τ) to a more complex one is also shown. It is

argued that, although the choices made for these parts of

the equivalent weights particle filter need to be explored in

more detail in higher dimensional models, the conclusions

drawn are likely to be generic regardless of the model to

which the scheme is applied.

The percentage of particles retained under the equivalent

weights proposal density is expected to be much more

dependent on the model and observation specifics. For the

Lorenz 63 system of equations, the percentage of particles

retained has the greatest effect on the variance of posterior

pdfs regardless of the number of ensemble members or

the frequency or variance of observations. The effect is

only reduced when the number of variables observed is

increased.

It is clear with the Lorenz 63 system that if the main

objective is to represent the posterior pdf using just a few

particles then it is preferable to ensure equivalent weights

for only 70-80% of particles. However there is also an

argument for including 100% of particles. If 100% of

particles are kept then all particles have equivalent weights

at observation time. This removes the need for resampling,

since there will no longer be particles with small weights to

be abandoned. As a result the posterior pdf, p(xn−r:n|yn),

no longer needs to be based only on the model trajectories

between time steps and we can now return to the full

posterior p(x0:n|y1:n) based on whole model trajectories

and all observations. This provides an incentive for keeping

all particles despite the negative impact on representing

the posterior pdf. Since a greater number of observed

variables leads to less movement, it may be that in a

higher dimensional model 100% of particles can be retained

without negatively impacting the posterior pdf.

4. Conclusion and Discussion

The equivalent weights particle filter was introduced in Van

Leeuwen (2010) where its efficiency in capturing the truth

with only minimal particles in the Lorenz-63 model was
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demonstrated. This article explores the behaviour of the

scheme in more depth. It looks at how the proposal density

is used in the equivalent weights particle filter to ensure that

equally significant particles are sampled from the region

of the posterior local to the observations. It is shown how

the equivalent weights particle filter is similar to both the

optimal proposal density and implicit particle filters through

its use of proposal densities. However the optimal proposal

density, and equivalently the implicit particle filter under

certain conditions, will still suffer from filter degeneracy

when a large number of observations are present. The

equivalent weights particle filter avoids this relationship

and ensures equivalent weights by sampling from a specific

mixture density.

The ability of the equivalent weights particle filter to

represent the posterior distribution at individual time steps

is shown using the Lorenz-63 model. Provided that certain

choices are made as part of the mixture density, then

using just 20 particles, the scheme is able to not only

capture the mean of the posterior but also some of the

spread of the distribution. Examining the behaviour of the

scheme as the number of particles is increased and as

the number, frequency and variance of the observations

is changed, shows little or no relationship to the ability

of the equivalent weights particle filter to represent the

posterior pdf. Much more significant is the effect of varying

the percentage of particles for which equivalent weights

are assured. Increasing the percentage of particles has a

noticeable impact on the representation of the posterior and

the ensemble statistics. This allows tuning of the scheme

when the truth is known but will lead to uncertainties when

the true state of the system is unavailable.

One considerable benefit of the scheme is the ease

with which it can be implemented in large-dimensional

problems. We believe that the sensitivity seen in the Lorenz-

63 system will not be so apparent as the dimension

increases. The equivalent weights particle filter ensures

equally significant particles by reducing the weight of

some particles until the specified percentage have equivalent

weights. The reduction in weight is achieved by changing

the model states of the particles. In a higher-dimensional

system the movement by each particle can be distributed

over a larger number of dimensions and so less impact will

be seen in individual variables. This will lead to a smaller

impact on the representation of the posterior distribution.

Work is currently being carried out to investigate this with

the barotropic vorticity equation solved over a large (approx

65,500) dimensional grid.
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A. The variance of weights using the optimal proposal

density

Using the optimal proposal density, the weights are given

by

wi = A exp

[
−1

2
(yn −Hf(xn−1i ))(HQHT +R)−1

×(yn −Hf(xn−1i ))
]
. (40)

We can expand yn −Hf(xn−1i ) to yn −Hxnt +H(xnt −

f(xn−1i )), where xnt is the true state at time n. We can also

write xnt = f(xn−1t ) + dβnt to give yn −Hxnt +Hdβnt +

H(f(xn−1t )− f(xn−1i )). To obtain an order of magnitude

estimate for the variance in the weights, we also assume

that both the observation R and model errors HQHT are

uncorrelated, with variances Vy and Vx respectively, to give

− log(wi) =
1

2(Vx + Vy)

M∑
j=1

[
ynj −Hjx

n
t +Hjdβ

n
t +Hj(f(xn−1t )− f(xn−1i ))

]2
(41)

We are interested in the variance as the ensemble member

index i changes. To make the notation simpler, we group

the constants ynj , Hjx
n
t and Hjdβ

n
t into the variable αj .

We also assume that f(xn−1t ) is linear and so represent the

model equations by the matrix A. Hence we are interested

in the variance of

− log(wi) =
1

2(Vx + Vy)

M∑
j=1

[
αj +HjA(xn−1t − xn−1i )

]2
.

(42)

If we assume (xn−1t − xn−1i ) is Gaussian distributed

then (45) is close to a non-central χ2
M distribution. To

make it non-central χ2
M distributed requires normalisa-

tion by the variance of
[
αj +HjA(xn−1t − xn−1i )

]
=
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HjAP
n−1ATHT

j = (Pnx )j :

− log(wi) =
Pnx

2(Vx + Vy)

M∑
j=1

[
αj +HjA(xn−1t − xn−1i )

]2
(Pnx )j

(43)

where Pn−1 is the variance of the ensemble at time n−

1. Using the properties of non-central χ2
M distributions

the variance of − log(wi) is now given by a22(M + 2λ)

where a = Pnx /2(Vx + Vy) and λ = (
∑M
j=1 α

2
j )/P

n
x . We

have that
∑M
j=1 α

2
j =

∑M
j=1

[
(ynj −Hjx

n
t ) +Hjdβ

n
t )
]2

.

The observations yn are given and so the estimate of

variance depends on these specific observations. However,

since the observations are drawn from a Gaussian with

covariance R, for a large enough number of observations

we can approximate the realisation of
∑M
j=1(ynj −Hjx

n
t )2

with MVy and expect that
∑M
j=1(ynj −Hjx

n
t ) to be zero

on average. Similarly
∑M
j=1(Hjdβ

n
t )2 = MVx. Hence λ =

(MVy +MVx)/Pnx and the full variance of − logwi is

given by:

M

2

(
Pnx

Vx + Vy

)2(
1 + 2

(
Vy + Vx
Pnx

))
. (44)

B. Derivation of dominant terms when sampling from

a Gaussian under the equivalent weights step

Let x∗i = f(xn−1i ) + αiK(yn −Hf(xn−1i )), then it satis-

fies:

− logwresti +
1

2
(x∗i − f(xn−1i ))TQ−1(x∗i − f(xn−1i ))

+
1

2
(yn −Hx∗i )TR−1(yn −Hx∗i ) = C. (45)

Stochastic error can now be added to this value so that

xni = f(xn−1i ) + αiK(yn −Hf(xn−1i )) + ˜dβni

= x∗i + γdβni (46)

where γdβni = ˜dβni ∼ N(0, γ2Q) with γ controlling the

width of the variance and dβni ∼ N(0, Q). Then minus the

logarithm of the final weights at observation time is given

by

− logwi

= − log

(
wresti p(xni |x

n−1
i )p(yn|xni )

q(xni |x
n−1
i , yn)

)
∝ − logwresti

+
1

2
((x∗i + γdβni )− f(xn−1i ))TQ−1

× ((x∗i + γdβni )− f(xn−1i ))

+
1

2
(yn −H(x∗i + γdβni ))TR−1(yn −H(x∗i + γdβni ))

− 1

2
(xni − x∗i )T (γ2Q)−1(xni − x∗i )

∝ − logwresti

+
1

2
((x∗i − f(xn−1i )) + γdβni )TQ−1

× ((x∗i − f(xn−1i )) + γdβni )

+
1

2
(yn −Hx∗i − γHdβni )TR−1

× (yn −Hx∗i − γHdβni )

− 1

2
(γdβni )T (γ2Q)−1(γdβni )

(47)

∝ C +
1

2
(x∗i − f(xn−1i ))TQ−1γdβni

+
1

2
γdβni

TQ−1(x∗i − f(xn−1i )) +
1

2
γ2dβni

TQ−1dβni

− 1

2
(yn −Hx∗i )TR−1γHdβni

− 1

2
(γHdβni )TR−1(yn −Hx∗i )

+
1

2
(Hγdβni )TR−1(Hγdβni )− 1

2
(dβni )TQ−1(dβni ).

(48)

γ controls the width of the variance and so is chosen to be

very small. Hence all terms including γ do not significantly

contribute to − logwi and the dominant terms are

− logwi ≈ C −
1

2
dβni

TQ−1dβni (49)
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C. Scalar analysis of αi

If there is only one observation and so yn is a scalar rather

than a vector, then R consists simply of the singular value

Vy ,HQHT is Vx and di = yn −Hf(xn−1i ) is also a scalar.

Hence

bi = 0.5dTi R
−1di − C − logwresti

=
d2i

2Vy
− C − logwresti (50)

and

ai = 0.5dTi R
−1HKdi

= 0.5dTi R
−1HQHT (HQHT +R)−1di

=
d2iVx

2Vy(Vy + Vx)
. (51)

In order for αi = 1±
√

1− bi/ai to have real roots

requires

1− bi
ai
≥ 0

=⇒ ai ≥ bi

=⇒ d2iVx
2Vy(Vy + Vx)

≥ d2i
2Vy
− C − logwresti

=⇒ C −
(
− logwresti

)
≥ (Vx + Vy)di2 − d2iVx

2Vy(Vx + Vy)

=⇒ C −
(
− logwresti

)
≥ di2

2(Vx + Vy)
(52)

In addition if αi = 1−
√

1− bi/ai is going to be positive

then
√

1− bi/ai must be less than one which implies that

bi > 0, since we already know from above that ai ≥ bi.

0 < bi

=⇒ 0 <
d2i

2Vy
− C − logwresti

=⇒ C −
(
− logwresti

)
<

d2i
2Vy

(53)

So for the negative version of αi to be both positive and real

requires

di2

2(Vx + Vy)
≤ C −

(
− logwresti

)
<

d2i
2Vy

(54)

whereas for the positive version to be positive and real

simply requires

di2

2(Vx + Vy)
≤ C −

(
− logwresti

)
. (55)

D. Relative values of γU and γN

Sampling from a mixture density implies that a particle

can be sampled either from a Gaussian distribution or a

uniform distribution. In general, with particle filters, the

normalisation factors of the distributions are not considered

as they are the same for every particle and hence cancel

in the normalisation of the particles. However if particles

are sampled from two different densities, with two different

normalisation factors, then this needs to be accounted for in

the weights. The weights at observation time are given by

wi =
wresti p(xni |x

n−1
i )p(yn|xni )

q(xni |x
n−1
i , yn)

. (56)

If a particle is sampled from the Gaussian part of the

proposal density q(xni |x
n−1
i , yn) then its weight is given by

wi =
wresti p(xni |x

n−1
i )p(yn|xni )

ε
(2π)k/2|γ2

NQ|1/2
exp(− 1

2γUdβ
n
i (γ2UQ)−1γUdβni )

(57)

whereas if it is sampled from the Uniform part its weight is

wi =
|Q|1/2(2γU )k

1− ε
wresti p(xni |xn−1i )p(yn|xni ) (58)

Ignoring both wresti p(xni |x
n−1
i )p(yn|xni ) and

exp(− 1
2γUdβ

n
i (γ2UQ)−1γUdβ

n
i ), since variations in

these values are due to the samples chosen and so are

uncontrollable, we instead focus on the normalisation

constants for the different densities. It can be assumed that
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the majority of particles will be sampled from the Uniform

distribution since we choose the value of ε to ensure this.

Hence we can divide the weight of all particles by the

normalisation constant |Q|
1/2(2γU )k

1−ε so that it no longer

needs to be calculated for the majority of particles. This

leads to particles sampled from the Gaussian now having

weight due to the normalisation constants given by

(2π)k/2|γ2NQ|1/2

ε

(1− ε)
|Q|1/2(2γU )k

. (59)

Ideally we want this value to be less than or at least

equal to one to negate the additional weight a particle has

from exp(− 1
2γUdβ

n
i (γ2UQ)−1γUdβ

n
i ), since this has the

potential to cause filter degeneracy. For Eq. (62) to equal

one requires

γN =
2k/2ε

πk/2(1− ε)
γkU . (60)

Choosing γN smaller than this value may solve the

issues surrounding sampling from the Gaussian distribution.

However we have not explored this any further since we

assume that ε is chosen small enough that it is highly

unlikely that a particle will be sampled from the Gaussian

part of the mixture density.
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