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ABSTRACT

Sudden stratospheric warmings (SSWs) are usually considered to be initiated by planetary wave activity.
Here it is asked whether small-scale variability (e.g., related to gravity waves) can lead to SSWs given a
certain amount of planetary wave activity that is by itself not sufficient to cause a SSW. A highly vertically
truncated version of the Holton–Mass model of stratospheric wave–mean flow interaction, recently pro-
posed by Ruzmaikin et al., is extended to include stochastic forcing. In the deterministic setting, this
low-order model exhibits multiple stable equilibria corresponding to the undisturbed vortex and SSW state,
respectively. Momentum forcing due to quasi-random gravity wave activity is introduced as an additive
noise term in the zonal momentum equation. Two distinct approaches are pursued to study the stochastic
system. First, the system, initialized at the undisturbed state, is numerically integrated many times to derive
statistics of first passage times of the system undergoing a transition to the SSW state. Second, the Fokker–
Planck equation corresponding to the stochastic system is solved numerically to derive the stationary
probability density function of the system. Both approaches show that even small to moderate strengths of
the stochastic gravity wave forcing can be sufficient to cause a SSW for cases for which the deterministic
system would not have predicted a SSW.

1. Introduction

The stratospheric circulation in winter is dominated
by a strong cyclonic vortex over the pole. In principle,
this polar vortex is driven by radiative cooling due to
polar night. However, planetary waves frequently per-
turb the vortex in terms of both position and strength.
For sufficiently strong planetary wave forcing, these
disturbances can grow enough to destroy the polar vor-
tex as a well-organized entity. These abrupt transitions
are usually associated with a reversal of the zonal mean
flow and a strong warming of the polar stratosphere
and are thus called sudden stratospheric warmings
(SSWs). Planetary wave activity is much stronger in the
Northern Hemisphere compared to the Southern

Hemisphere, mainly because of the difference in topog-
raphy and land–sea contrast between the hemispheres,
and SSWs are therefore much more frequently ob-
served in the Northern Hemisphere. In fact, only one
SSW has ever been observed in the Southern Hemi-
sphere (see special issue of J. Atmos. Sci., Vol. 62, No.
5, 2005).

Conventionally, SSWs are considered to be caused
by planetary wave–mean flow interaction, more specifi-
cally by interactions of the zonal mean flow with zonal
wavenumbers 1–3 (Andrews et al. 1987). Small-scale
variability (e.g., due to breaking gravity waves), al-
though well known to be ubiquitous in the winter
stratosphere, is usually not considered to be sufficient
to cause SSWs (an exception is the study by Duck et al.
(2001), in which it is speculated that gravity waves
might significantly impact the polar vortex evolution).
In the present study, we ask whether such small-scale
variability can modify the nature of the planetary
wave–mean flow interaction to cause SSWs at planetary
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wave strengths that by themselves are not sufficient to
cause SSWs. This question is partly motivated by labo-
ratory studies in which gravity waves are observed to
cause transitions between different large-scale flow re-
gimes (Williams et al. 2003). Furthermore, such transi-
tions may be captured in a numerical model if the grav-
ity waves are represented stochastically (Williams et al.
2004).

Holton and Mass (1976) have shown that a phenom-
enon resembling SSWs exists in a truncated version of
a quasigeostrophic �-plane channel model of strato-
spheric wave–mean flow interaction (hereafter referred
to as the Holton–Mass model). For a single zonal wave-
number forced at the lower boundary and with Newto-
nian relaxation of the zonal mean wind toward radia-
tive equilibrium, they show that two distinct regimes
exist for the zonal mean circulation: (i) a steady re-
sponse for small wave forcing with the zonal mean wind
close to radiative equilibrium and (ii) a vacillating re-
sponse for the wave forcing above a threshold value
with quasiperiodic zonal mean wind oscillations. Yoden
(1987) studied the bifurcation properties of the Holton–
Mass model and showed that the two circulation re-
gimes correspond to two stable solutions of the system.

Recently, Ruzmaikin et al. (2003) introduced a highly
vertically truncated version of the Holton–Mass model
consisting of only three ordinary differential equations
for the real and imaginary parts of the wave stream-
function and the zonal mean wind, respectively. For a
given set of external parameters and very small ampli-
tude of the wave forcing, this low-order system has only
one stable solution close to radiative equilibrium. How-
ever, for higher amplitudes of the wave forcing, a sec-
ond stable solution emerges that substantially deviates
from radiative equilibrium and for which the wave forc-
ing of the mean flow is of primary importance. For very
high amplitude of the wave forcing, only the latter so-
lution, far from radiative equilibrium, is stable. Thus,
when initialized close to radiative equilibrium, the sys-
tem undergoes an abrupt transition accompanying a
sudden reduction of the zonal mean wind when the
amplitude of the wave forcing exceeds a critical thresh-
old. This abrupt transition in a low-order wave–mean
flow model is likely the simplest prototype of a SSW.

In the present study, the low-order model introduced
by Ruzmaikin et al. (2003) is extended to include sto-
chastic forcing. Specifically, momentum forcing due to
quasirandom gravity wave activity is introduced as an
additive noise term in the zonal mean zonal momentum
equation. It is thereby asked whether small-scale vari-
ability related to gravity waves can lead to SSWs given
a certain amount of planetary wave activity that is by
itself not sufficient to cause a SSW. Subsequent sections

present the low-order model and our strategy to study
SSWs in this model (section 2), followed by results and
conclusions (section 3).

2. Low-order model and strategy

The stochastic low-order model used here represents
a simple extension of the following deterministic low-
order model as derived by Ruzmaikin et al. (2003):

Ẋ � ��1X � rY � sUY � �h � �hḣ,

Ẏ � ��1Y � rX � sUX � �hU, and

U̇ � ��2�U � UR� � �hY. �1�

This low-order system represents a coarse-grained ver-
sion of the Holton–Mass model (Holton and Mass 1976;
Yoden 1987) with only three vertical levels kept: the
lower and upper boundary and a midlevel. Equations
(1) represent ordinary differential evolution equations
for the real and imaginary part of the wave streamfunc-
tion � � X � iY and the zonal mean zonal wind U at
the midlevel [for details, see Ruzmaikin et al. (2003)].
The Holton–Mass model can be derived through
straightforward truncation of the underlying quasigeo-
strophic potential vorticity equation coupled to an
equation for the zonal mean zonal wind with Newto-
nian damping. In Eqs. (1), UR corresponds to the zonal-
mean zonal wind in thermal wind balance with the tem-
perature of the prescribed radiative equilibrium; it is
determined through the shear � of the radiative equi-
librium and the midlevel height zT /2. Thus, UR � �zT /
2, where zT is the height of the upper boundary.
Throughout this study, � � 1 m s�1 km�1 (i.e., UR 	 35
m s�1) and is fixed [note that accordingly the transient
contribution proportional to �̇ is omitted in Eqs. (1)].
The control parameter of the low-order system h
parameterizes the (tropospheric) wave forcing and en-
ters Eqs. (1) through the lower boundary condition
[�(0, t) � gh/f ]; except for the experiments shown in
Fig. 1, h is not considered to be time-dependent (i.e., for
almost all experiments shown in this study, ḣ � 0 and
the last term in the evolution equation for X is not
present). All other parameters in Eqs. (1) are a function
of prescribed external parameters and are given in the
appendix of Ruzmaikin et al. (2003). The inverse time
scales of the system 
1,2 result in 
1 	 (123 days)�1 and

2 	 (30 days)�1.

Stationary solutions of the system (1) can be ob-
tained by zeroing the left-hand sides and are shown for
U as a function of h in Fig. 1 [gray lines; this part of
the figure is identical to Fig. 3 of Ruzmaikin et al.
(2003)]. For 15 m � h � 160 m, three stationary solu-
tions exist, of which two are stable (solid lines in Fig. 1):
the upper branch, the system close to radiative equilib-
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rium, hereafter the radiative solution (strong U); and
the lower branch, the system far from radiative equi-
librium, hereafter the SSW solution (weak U). The
middle branch (dotted line) represents an unstable so-
lution. For h � 15 m (weak tropospheric wave forcing),
only the radiative solution exists; likewise, for h � 160
m (strong tropospheric wave forcing), only the SSW
solution exists. That is, initialized at the radiative solu-
tion, the deterministic system (1) allows for SSWs only
if the tropospheric wave forcing h exceeds a certain
threshold value (here 160 m). This is illustrated in Fig.
1a by overplotting a weakly time-dependent solution
U(t) of Eqs. (1) as obtained by prescribing h as a slowly
varying function of time,

h�t� � 250 m�1
2

�
1
2

cos
2�t

4000 days�, �2�

such that the transience of h does not impact the be-
havior of the system (i.e., the solution is quasistation-
ary). Numerically, system (1) is integrated using a
simple first-order accurate forward-in-time finite differ-
ence scheme with a time step of 0.1 days. As prescribed
by Eq. (2), h(t) smoothly and monotonically increases
from 0 to 250 m within the first 2000 days and smoothly
and monotonically decreases in the same way from 250
to 0 m during the next 2000 days, after which the inte-
gration is stopped. The plotting convention in Fig. 1 is
such that time is continuously running from left to right;
that is, the abscissa values h reverse at the dashed lines.
Initially, the quasistationary solution U(t) (thin black
line in Fig. 1a) corresponds to the radiative solution
(upper branch), remaining on the upper branch until
the radiative solution ceases to exist (at h 	 160 m), at
which point a SSW occurs [i.e., the system makes a

transition to the SSW solution (lower branch)]. Like-
wise, for decreasing h the system remains on the lower
branch until the SSW solution ceases to exist (at h 	 15
m), thereby closing a hysteresis loop. Of course, in the
bistable regime in which both the radiative and the
SSW–solution exist and are stable, it is the initial con-
ditions that determine whether the system will eventu-
ally end up on the lower or upper branch.

In this study, the deterministic system (1) is extended
to include the effect of small-scale variability (e.g., due
to quasirandom gravity wave activity, which in the full
equations would be represented by the vertical conver-
gence of vertical flux of zonal momentum). This small-
scale variability is represented as a simple additive
noise term incorporated into the evolution equation for
U (denoted by �a):

U̇ � ��2�U � UR� � �hY � �a, �3�

where �a is modeled as Gaussian white noise:

	a�t�	a�t
� � �a
2��t � t
�. �4�

Here, �a represents the strength of this additive noise
and (•) denotes the Dirac delta distribution. In gen-
eral, the stochastic forcing �a represents the effect of
any small-scale variability, not necessarily limited to
gravity waves, that can be parameterized decoupled
from the large-scale flow (i.e., �a represents an additive
forcing of U and �a does not enter the evolution equa-
tions for X and Y). However, in the present study we
assume that gravity wave activity is the main cause of
small-scale forcing of the mean flow in the polar strato-
sphere.

According to the forward-in-time numerical scheme
for the deterministic system (1), the stochastic term in

FIG. 1. Illustration of an SSW in the (a) deterministic and (b) stochastic system); U is plotted as a function of h, where h was prescribed
as a slowly varying function of time given by Eq. (2) and U is obtained by forward integration of the deterministic or stochastic system.
The planetary wave forcing h is initially zero and increases monotonically to 250 m (marked by vertical dashed lines) during the first
2000 days, with a reverse but otherwise identical decrease in magnitude back to zero from 2000 to 4000 days. For the integration shown
in (b), �a � 0.5 m s�1 day�1. Note the reversed abscissa values to the right of the dashed lines in both panels. Thick gray lines mark
stationary solutions of the deterministic system, with full lines denoting stable solutions (radiative solution � upper branch; SSW
solution � lower branch) and the dotted lines denoting the unstable solution. See text for details.
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Eq. (3) is appropriately integrated using the square root
of the time step (Kloeden et al. 1994). The units of �a as
defined through Eq. (4) therefore result in nonphysical
units of meters-seconds�1.5 which would complicate the
interpretation of results. However, �a should be inter-
preted as parameterizing a physical random process of
finite autocorrelation time T, say an Ornstein–
Uhlenbeck process [see e.g., Horsthemke and Lefever
(1983)]. In this case, the corresponding variance would
result in �2

a /2T. If we measure this variance in (meters
per second per day)2 and assume T � 0.5 days (which is
not unrealistic for gravity waves), then values of �a pro-
vide the correct corresponding physical values of units
meters per second per day. We will therefore simply
refer to values of �a having units meters per second per
day throughout the paper. For reference we note that
observed values of gravity wave drag in the polar
stratosphere are on the order of 1 m s�1 day�1 (Ham-
ilton 1997). In the present study, values for �a on the
order of 0.1–10 m s�1 day�1 are considered. It should
be noted that our model represents a strong idealiza-
tion of the real atmosphere and that a quantitative com-
parison of values for �a to observed gravity wave drags
has only limited relevance. Nevertheless, the range of
values for �a used in the present study was chosen to
broadly represent the observed parameter regime.

SSWs in the stochastic system are represented as
transitions from the radiative solution (upper branch)
to the SSW solution (lower branch). Given that the
system is initialized at the (deterministic) radiative so-
lution in the bistable regime, transitions can only be
caused by the imposed small-scale variability param-
eterized as additive noise. We thus refer to these tran-
sitions as noise-induced transitions. One such noise-
induced transition is illustrated in Fig. 1b, which shows
a repetition of the above described deterministic
weakly transient experiment (Fig. 1a) with prescribed
h(t) as in Eq. (2). This time, the system contains an
additive noise term according to Eq. (3) with �a � 0.5
m s�1 day�1 (i.e., rather small noise strength). Evi-
dently, a transition (SSW) from the upper to the lower
branch occurs long before the threshold value of h at
which the radiative solution ceases to exist is reached
(transition at h 	 115 m). Once in the basin of attrac-
tion of the SSW solution, the system remains there until
h gets close to the threshold at which the SSW solution
ceases to exist (reverse transition at h 	 20 m in Fig.
1b). This indicates that in the bistable regime the SSW
solution is more stable (deeper basin of attraction) than
the radiative solution (cf. section 3). Note that the par-
ticular realization of the stochastic system shown in Fig.
1b was chosen to show representative transition points.

One way to study these noise-induced transitions is

to obtain statistics of first passage times (FPTs) of the
system undergoing such transitions. For a given control
parameter h the system is initialized at the upper
branch (U 	 UR) and integrated forward in time until U
crosses the stationary solution of the lower branch for
the first time that gives an FPT. This experiment is
repeated many times with different noise realizations to
derive statistics of these FPTs. Transitions occurring
after 1000 days are not considered because this is much
longer than the length of a given winter (i.e., integra-
tions are stopped at t � 1000 days if no transition occurs
by then).

Another way to study the behavior of the stochastic
system is to solve the corresponding Fokker–Planck
equation, which is a deterministic partial differential
equation for the evolution of the probability density
function in [X, Y, U ] space. The major advantage of this
approach is that the Fokker–Planck equation describes
the outcome of a hypothetical infinite-member en-
semble, which is clearly unachievable by direct integra-
tion of the stochastic differential equations. The Fok-
ker–Planck equation governing the evolution of the
probability density function p(x, t) for this system is

�

�t
p�x, t� � ��

i�1

3
�

�xi
�Aip�x, t�� �

1
2

�a
2

�2

�x3
2 p�x, t�, �5�

where x(t) describes the state vector with components
x � (x1, x2, x3) � (X, Y, U) and A(x) is the vector
describing the deterministic dynamics with its compo-
nents corresponding to the right-hand sides of Eqs. (1);
that is, A � (A1, A2, A3) � (Ẋ,Ẏ,U̇).

The summation term on the right-hand side of Eq.
(5) describes the dynamics of the deterministic system
and is called the deterministic drift. The remaining term
on the right-hand side is associated with diffusion of
probability by the additive noise (only present in the
evolution equation for U). Note that because our sys-
tem contains no state-dependent (multiplicative) noise,
the noise-induced drift term is absent from the Fokker–
Planck equation, and so there is no distinction between
the Stratonovich and Itô interpretations of stochastic
calculus [see, e.g., Horsthemke and Lefever (1983) for
more details].

Equation (5) is numerically integrated using a stan-
dard centered-in-time and centered-in-space (CTCS) fi-
nite difference scheme, which is second-order accurate.
An integration domain defined by X ∈ (�0.06, 0.04), Y
∈ (�0.05, 0.05), and U ∈ (0, 0.8) in nondimensional
units is used (for nondimensionalization, the earth’s ra-
dius is used as the length scale and 1 day as the time
scale). The domain is divided into a regular numerical
grid of 20 � 20 � 40 boxes in the X, Y, and U dimen-
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sions, respectively. The nondimensional time step is
10�4. The leapfrog time-stepping scheme uses a Robert
filter (with filter parameter 0.01) to suppress computa-
tional mode splitting. All the integrations of the Fok-
ker–Planck Eq. (5) described in this study use h � 100
m and � � 1 m s�1 km�1.

3. Results and conclusions

For a given control parameter h � 100 m, Fig. 2a
shows the cumulative frequency distribution of FPTs as
a function of noise strength �a obtained by computing
1000 different stochastic trajectories for each �a. As
mentioned in the previous section, FPTs smaller than
100 days (i.e., with at least one transition within a given
winter) are of primary interest and FPTs greater than
1000 days are not considered (trajectories were stopped
after 1000 days if no transition had occurred by then).
For very small noise strength (�a � 0.2 m s�1 day�1),
there are no transitions (gray shading); that is, the sto-
chastic system qualitatively behaves like the determin-
istic system. However, for larger noise strengths, tran-
sitions become more and more likely. The probability
of transitions with a certain FPT sharply increases once
the minimum noise strength for transitions to occur is
exceeded. That is, once �a exceeds this minimum value,
even a small to moderate extra enhancement in noise
strength makes transitions very likely to occur. At �a 	
1 m s�1 day�1, a transition in a given winter (within the
first 100 days) has 50% probability (i.e., an SSW would
be expected statistically to occur every other winter).
The median FPT (50% contour in Fig. 2a) roughly
scales with noise strength �a (roughly linear behavior
on the log–log scale in Fig. 2a).

Figure 2b shows the cumulative frequency distribu-
tion of a transition to occur at least once over the

course of a given winter (FPT � 100 days), that is, in
our terminology, the probability of a SSW as a function
of �a and h. The minimum noise strength needed for
transitions to occur (at least once out of the 1000 tra-
jectories that were run) is not a strong function of h for
h � 100 m. The median (SSWs every other winter) for
h � 100 m is located at �a � 1 m s�1 day�1, even for
small h near the threshold where the SSW solution
ceases to exist. That is, noise-induced transitions can
still occur even when the large-scale forcing (param-
eterized by h) is far from causing a (deterministic) tran-
sition to the SSW solution. Applied to the real atmo-
sphere, this means that even when planetary wave ac-
tivity is not sufficient to cause a SSW by itself, small-
scale variability (e.g., due to gravity waves) could
trigger a SSW.

For h � 100 m, transitions become more and more
likely and transitions can occur even for very small
noise strength (�a � 0.1 m s�1 day�1 and smaller). This
is not surprising because the system for h � 100 m gets
closer to the threshold at which the radiative solution
ceases to exist.

The FPT analysis above can only determine whether
a transition occurs in principle (i.e., at least once, from
the radiative to the SSW solution). In general, transi-
tion back from the SSW to the radiative solution might
also occur, as well as repeated transitions between the
two stable solutions. In the latter case, one would ex-
pect a bimodal occupation statistic of the two stable
solutions. Such a behavior can be tested more conve-
niently by solving the Fokker–Planck Eq. (5). Numeri-
cal solutions of Eq. (5) are only obtained for h � 100 m
(and � � 1 m s�1 km�1 as before) in the present study.

Figure 3 shows the evolution of the probability den-
sity function when �a � 3 m s�1 day�1. Following the
FPT analysis above, an initial probability density func-

FIG. 2. (a) Cumulative frequency distribution of first passage times for h � 100 m as a function of noise strength �a. An FPT is defined
as the first transition from the radiative solution to the wave SSW solution. The horizontal dashed line marks approximate length of
winter (100 days). (b) Relative frequency of FPT � 100 days (i.e., the probability that a transition from a radiative to an SSW solution
takes place within a given winter as a function of �a and h). Gray shading marks areas of zero frequency in both (a) and (b).
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tion that is Gaussian and centered on the radiative so-
lution is used, with widths equal to one-twentieth of the
domain extent in each dimension (Fig. 3a). The diffu-
sion term in Eq. (5) broadens the probability density
function preferentially in the direction of the SSW so-
lution over the first 80 days (Fig. 3b). The maximum
probability density remains at the radiative solution
during this time interval, but a secondary maximum
appears near the SSW solution after around 120 days.
The secondary maximum gradually intensifies and
eventually becomes the global maximum after around
200 days (Fig. 3c). There is little subsequent evolution;
thus, the state after 200 days is very close to the equili-
brated state, that is, the solution of Eq. (5) with �p/�t �
0. The equilibrated probability density function is
clearly bimodal and the system is evidently more likely
to be found near the SSW solution than the radiative
solution. It is interesting to note that bimodality was
also obtained from an EOF analysis of observed vari-
ability of the winter stratosphere (Monahan et al. 2003).
However, bimodality in the case of Monahan et al.
(2003) results from variability in initial conditions (dif-

ferent winters) and in the large-scale forcing (which
would translate into variability of h and is not consid-
ered in the present study). On the other hand, bimo-
dality as in Fig. 3c can only result from the additive
noise term, that is, from small-scale variability (to the
extent that for initial conditions as in Fig. 3a the deter-
ministic system would always approach the radiative
solution).

Figure 4 shows how the equilibrated probability den-
sity function varies with noise strength when initiated
near the radiative solution, as described in the previous
paragraph. For small values of the noise (�a � 1.5 m s�1

day�1; Fig. 4a), the equilibrated probability density
function is centered on the SSW solution, with no evi-
dence of a secondary maximum at the radiative solu-
tion. Therefore, for this noise strength, the system ini-
tialized near the radiative solution will always undergo
a transition to the wave solution eventually. This find-
ing is consistent with the FPT analysis above. Further-
more, the figure implies that, once the transition to the
SSW solution has occurred, the system will remain
there indefinitely (i.e., that the reverse transition does

FIG. 3. Numerical solution of the Fokker–Planck equation for the case h � 100 m and �a � 3 m s�1 day�1. The quantity shown is the
probability density function integrated over all values of U, plotted as a function of X and Y (nondimensionalized), after (a) 0, (b) 80,
and (c) 200 days. The initial state, shown in (a), is a narrow three-dimensional Gaussian centered on the radiative stable equilibrium
point. The crosses indicate the locations of the two stable equilibrium points of the deterministic system: the radiative solution (X �
0.006, Y � 0.0003, closer to the origin) and the SSW solution (X � �0.025, Y � 0.0041).

FIG. 4. Equilibrated solutions of the Fokker–Planck equation for the case h � 100 m. The quantity shown is the equilibrated
probability density function as in Fig. 3. The noise levels are �a � (a) 1.5, (b) 3.0, and (c) 4.4 m s�1 day�1. The initial state is that shown
in Fig. 3a in each case. The crosses indicate the locations of the two stable equilibrium points of the deterministic system.
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not occur). As the noise strength is increased, bimodal-
ity in the equilibrated probability density function oc-
curs around �a � 3 m s�1 day�1 (Fig. 4b), implying that
the reverse transition from the SSW to the radiative
solution becomes possible at these intermediate noise
levels. For higher noise strengths (�a � 4.4 m s�1 day�1;
Fig. 4c), the equilibrated probability density function
becomes unimodal once again, but it is so wide that the
concept of two distinct stable states (which is derived
from the deterministic system) is no longer meaningful.
Further experiments for a range of values of �a be-
tween 0.5 and 7 m s�1 day�1 revealed that the system is
more likely to be found near the SSW solution for � �
3 m s�1 day�1, whereas the system is more likely to be
found near the radiative solution for � � 3 m s�1 day�1

(not shown).
In summary, the low-order system (1), as introduced

by Ruzmaikin et al. (2003) and extended by an additive
noise term, Eq. (3), exhibits noise-induced transitions
from the radiative solution to the SSW solution even
for small noise strength �a. That is, SSWs can occur for
values of h (mimicking planetary wave activity) that are
too small to cause a transition to the SSW solution in
the deterministic case. Even for small values of h far
from the critical value at which transitions would occur
in the deterministic system, noise-induced transitions
do occur, albeit very infrequently for moderate gravity
wave noise levels. Furthermore, the system with noise
preferentially resides around the SSW solution for
small to intermediate noise strengths (cf. Figures 4a and
1b).

A shortcoming of the present approach is the neglect
of transience in planetary wave activity—for example,
even for small background planetary wave forcing (i.e.,
small h), a burst of additional forcing that exceeds the
threshold above which only the SSW solution exists
(h � 160 m) might trigger a transition to the SSW so-
lution. The importance of such transience in planetary
wave activity has long been recognized since the origi-
nal work of Matsuno (1971). Here we restricted our-
selves to constant planetary wave forcing as in Holton
and Mass (1976); we focused instead in this note on
noiselike small-scale forcing because this represents a
largely unexplored mechanism to cause SSWs.

Our numerical experiments represent a proof-of-
concept study using a very simple conceptual model. It
remains to be seen whether the mechanism here de-
scribed can be found in the real atmosphere or even in
more comprehensive models. A recent numerical study
employing the Holton–Mass model found that pertur-
bations applied to the zonal mean zonal wind in the

upper stratosphere can lead to significant downward
propagation, especially in the bistable regime, that is,
when both the radiative and the SSW solutions are
stable (Hardiman and Haynes 2008, manuscript submit-
ted to J. Geophys. Res.). Our findings suggest that the
role of small-scale variability in triggering SSWs may be
important and should be studied further.
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