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[1] The evaluation of the quality and usefulness of climate modeling systems is
dependent upon an assessment of both the limited predictability of the climate system and
the uncertainties stemming from model formulation. In this study a methodology is
presented that is suited to assess the performance of a regional climate model (RCM),
based on its ability to represent the natural interannual variability on monthly and seasonal
timescales. The methodology involves carrying out multiyear ensemble simulations
(to assess the predictability bounds within which the model can be evaluated against
observations) and multiyear sensitivity experiments using different model formulations
(to assess the model uncertainty). As an example application, experiments driven by
assimilated lateral boundary conditions and sea surface temperatures from the ECMWF
Reanalysis Project (ERA-15, 1979–1993) were conducted. While the ensemble
experiment demonstrates that the predictability of the regional climate varies strongly
between different seasons and regions, being weakest during the summer and over
continental regions, important sensitivities of the modeling system to parameterization
choices are uncovered. In particular, compensating mechanisms related to the long-term
representation of the water cycle are revealed, in which summer dry and hot conditions at
the surface, resulting from insufficient evaporation, can persist despite insufficient net
solar radiation (a result of unrealistic cloud-radiative feedbacks). INDEX TERMS: 3309
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1. Introduction

[2] Modern climate models are highly complex numerical
constructs, encoding the laws of dynamics and thermody-
namics for relevant geophysical fluids. Also, in these
models, because of computational and theoretical limita-
tions, explicitly resolved dynamical mechanisms coexist
with parameterized physical processes. As stated by Palmer
[2000], ‘‘the predictability of weather and climate forecasts
is determined by the projection of uncertainties in both
initial conditions (ICs) and model formulation onto flow-
dependent instabilities of the chaotic climate attractor.’’
Loss of predictability occurs not only because of uncertain-
ties in initial conditions (usually thought particularly rele-
vant for weather forecasting), but also due to model
formulation (particularly relevant to climate modeling). It
is difficult to separate these two kinds of sources of error,
and this seriously hampers the evaluation of climate mod-
eling systems. In fact, the response of a climate model to
parameterization changes can lead to unexpected biases, and
the tuning, validation and improvement of these complex

tools represents a difficult challenge to climate modelers.
Improving validation methodologies is thus an important
target of future climate research [Intergovernmental Panel
on Climate Change (IPCC), 2001, chapter 10].
[3] Of particular concern in this context is the compen-

sation between model errors: such compensation may
well produce seemingly correct results for incorrect reasons.
A recent and still largely unresolved example is the repre-
sentation of the seasonal water cycle over continental-
scale land surfaces. Many atmospheric models currently
suffer from an artificial summer drying and warming over
major mid-latitude continents. Some investigators [e.g.,
Machenhauer et al., 1998] suggest that the causes may be
ascribed to large-scale biases inducing subsidence; others
have focused on physical parameterizations, addressing
radiation and land surface processes [e.g., Betts et al.,
1996; Wild et al., 1996; Murphy, 1999; Seneviratne et al.,
2002; Hagemann et al., 2002]. The range of these inves-
tigations suggests that many different physical processes are
probably relevant to the problem.
[4] The mutual interaction of physical mechanisms, as

represented by physical parameterizations within the models,
has been the focus of the European Union project
MERCURE (Modeling European Regional Climate: Under-
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standing and Reducing Errors), spanning the ECMWF
1979–1993 reanalysis period (ERA-15 [Gibson et al.,
1997]). Specific MERCURE studies have addressed a
detailed analysis and intercomparison of models’ energy
and water balance [Hagemann et al., 2002]; causes behind
model warming and drying in summer [Hagemann et al.,
2001]; and precipitation at daily resolution [Frei et al.,
2003]. Previous studies of European climate, including the
assessment of the performance of RCM formulations,
include Giorgi and Marinucci [1991, 1996], Christensen
et al. [1997], Jones et al. [1995], and Noguer et al. [1998].
[5] Regional Climate Models (RCMs) were historically

developed as physically based downscaling tools, in which
the limited-area climate model was driven by time-depen-
dent lateral boundary data, either from an analysis or from a
coarser-meshed general circulation model [e.g., Giorgi,
1990; Jones et al., 1995]. Recently, however, as the critical
role played by subgrid-scale processes has become fully
appreciated, RCMs have been increasingly applied to study
physical processes [e.g., Frei et al., 1998; Giorgi and
Mearns, 1999].
[6] The goal of this paper is to develop an improved

methodology for the assessment of the quality of an RCM
system in the presence of limited predictability. Here the
term predictability is intended as sensitivity to ICs in the
context of an RCM, that is, a limited area model (LAM)
with prescribed lateral boundary conditions (BCs). In order
to pursue our goals, a detailed analysis is undertaken of one
RCM’s ability to represent the natural interannual variability
on monthly and seasonal time-scales within the ERA-15
period 1979–1993. The RCM is driven at its lateral
boundaries by the observed synoptic-scale variability, and
the model is evaluated for its ability to reproduce climatic
fluctuations on monthly and seasonal timescales, within
predictability bounds derived from an ensemble experiment.
A previous version of this methodology has been used in
month-long integrations [Lüthi et al., 1996; Fukutome et al.,
1999], and more recently in Giorgi and Shields [1999],
Small et al. [1999] and Dutton and Barron [2000].
[7] The validation of a climate modeling system relative

to the interannual variability has two major advantages.
Firstly, unlike the validation based on seasonal or yearly
climate means, the method is much less permissive with
respect to the practice of model tuning and associated
misleading effects. In fact, even a hypothetical perfectly
tuned model with an excellent representation of the longer-
term mean climate may still exhibit deficiencies in repre-
senting interannual variations. Secondly, the methodology
implicitly assesses simulated climatic differences (such as
differences between warm and cold winters), and this may
to some extent be taken as a surrogate for climatic changes.
A validation based on interannual variability can also assess
the role of model biases in the simulation of climatic
differences, one of the major open issues when using a
modeling system for the simulation of climate change
[IPCC, 2001].
[8] The main disadvantage of our validation methodology

is that its applicability is restricted to simulations of inter-
annual variability that contain some degree of determinism.
In an RCM, the monthly mean climate is largely controlled
by the forcing at the lateral boundaries and by long-term
memory effects (such as those associated with soil moisture

and snow cover) in the interior [Jones et al., 1995], as well
as by model formulation. In contrast, our methodology is
not applicable to interannual variations simulated by a
coupled atmosphere-ocean GCM, where comparison with
observations on a month-to-month basis is not meaningful,
due to the lack of deterministic forcing. To some extent,
however, our methodology is closely related to AMIP-type
[Gates et al., 1999] studies on seasonal predictability in the
tropics, driven by prescribed SST conditions.
[9] The RCM used in this study is the Climate High-

Resolution Model (CHRM), described in section 2, which
had previously been used extensively for the study of
continental-scale interannual climate variability [Lüthi et
al., 1996; Fukutome et al., 1999], as well as land-surface
and precipitation processes [Schär et al., 1996; Frei et al.,
1998; Schär et al., 1999; Heck et al., 2001]. Other aspects
of the CHRM experiments presented in this paper were
addressed by Hagemann et al. [2002] and Frei et al. [2003],
in the context of model intercomparison studies involving
other European models.
[10] The interannual variability methodology of Lüthi et

al. [1996] is here extended to cover a set of continuous
15-year simulations and to include a treatment of uncertainty
due to both model formulation and to predictability limi-
tations. Special consideration will be given to the processes
relating to the water cycle, due to their importance for the
climate system (and typical model sensitivity associated
with their parameterization), but also due to their potentially
considerable influence on climate change. Such ensembles
of long experiments, in which different combinations of
physical parameterization options are activated, while long-
term memories in the climate system are retained, can yield
important insights into the underlying physical processes
(see also recommendations in Giorgi and Bi [2000]).
Ensembles of (short) RCM experiments including different
model formulations have also been recently analyzed by
Yang and Arritt [2002].
[11] The outline of the paper is as follows: In section 2,

the most recent modeling changes introduced into the
CHRM are documented; section 3 discusses the model’s
mean climate, including its ability to represent current
climate variability, followed by a comparative assessment
of the model’s predictability and sensitivity to model
formulation; finally section 4 provides an interpretation
of the mechanisms uncovered by the sensitivity studies,
together with some concluding considerations.

2. Methods

2.1. CHRM Regional Climate Model

[12] The CHRM is a climate version of the former
mesoscale weather forecasting model of the German and
Swiss meteorological services, known as the HRM (High
Resolution Model) or formerly EM (Europa-Modell). This
model has been used until recently as an operational
numerical weather prediction (NWP) model at the Swiss
and German weather services [Majewski, 1991; Majewski
and Schrodin, 1994] and had been modified by Lüthi et al.
[1996] for application as a regional climate model. The
model grid is a regular latitude/longitude grid (Arakawa
type C) with a rotated pole and a hybrid vertical coordinate
[Simmons and Burridge, 1981]. It includes a full package of
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physical parameterizations, including a mass-flux scheme
for moist convection [Tiedtke, 1989]; Kessler-type micro-
physics [Kessler, 1969; Lin et al., 1983]; a radiation
package [Ritter and Geleyn, 1992] including interaction
with partial cloud cover (of the type described by Slingo
[1987]); a land surface scheme [Dickinson, 1984] with three
soil moisture layers; an ‘‘extended force-restore’’ soil ther-
mal model [Jacobsen and Heise, 1982], also capable of
interacting with accumulated snow at the soil surface.
Vertical diffusion and turbulent fluxes are based on the
flux-gradient approach (of the classic Louis et al. [1982]
type) in the surface layer, while the parameterization of
Mellor and Yamada [1974] is used in the boundary layer
and above.
[13] Recent changes in our regional climate modeling

suite, in relation to previous work [Lüthi et al., 1996; Schär
et al., 1999; Heck et al., 2001], were inspired by the need to
extend simulations beyond the periods typically considered
in the NWP context, and have come in three individual
areas
2.1.1. Land Surface and Soil Processes
[14] The Soil-Vegetation-Atmosphere Transfer Scheme

(SVATS) and deep soils upgrades were motivated by a
desire for improved simulation of land surface balances of
heat, water and momentum in a realistic and sustainable
fashion on decadal timescales and over a very heteroge-
neous region. In particular, the soil water storage capacity
had to be increased from the standard (shallow) NWP
profile because soil water evolves freely after initialization
of the RCM and is never corrected in the course of the
simulation. Three soil moisture levels are therefore used to
reach a total depth of 1.7m. The soil profiles are initialized
(never nudged) with ERA-15 data, retaining a ‘‘climatolog-
ical’’ layer from 1.7 to 3.4m, which acts as a fixed boundary
condition, but is only accessed in case the root zone layer
dries further than the air dryness point (ADP). In terms of
soil thermal processes, the original ‘‘extended force-restore
method’’ of Jacobsen and Heise [1982] was modified
in order to control winter soil surface temperatures: we
included a representation of soil moisture freezing, similar
to Lunardini [1983], which imposes a latent heat release/
uptake barrier in a 1 degree interval around the freezing
point, as is also done in the BATS 1e [Dickinson et al.,
1993] and LSM [Bonan, 1996].
2.1.2. Parameterization of the Surface Layer
[15] The use of Beljaars and Viterbo [1998] surface layer

parameterization, in lieu of the more standard Louis et al.
[1982] scheme, was motivated by the desire to eliminate a
well-known model cold bias in stable situations. Corre-
sponding improvements, using alternative analytical stabil-
ity functions formulations, had been reported for the
ECMWF and other models [Holstlag and Boville, 1993;
Hess and McAvaney, 1997].
2.1.3. Optional Xu and Randall [1996] Cloud
Diagnostics Scheme
[16] The Ritter and Geleyn [1992] radiation package is of

the delta-two-stream type and was originally conceived as a
fairly comprehensive package, useful for both NWP and
climate studies. For such a purpose it retains the interaction
of three short-wave and five long-wave bands of radiation
with cloud droplets (not yet with ice species), gases (H2O, a
composite CO2 ensemble and O3) and five aerosol species.

The key to the parameterization’s interaction with clouds
lies in the definition of the model’s integrated grid box
liquid water content, which is then used inside the radiation
module to distinguish eight different cloud types and
respective drop-size distributions (thus prescribing relative
optical properties), as is described by Ritter and Geleyn
[1992] and originally formulated by Stephens [1979]. The
model is thus capable of representing the cloud-radiation
interaction in a variety of climatic conditions, including
future climate scenarios, since the abundance and distribu-
tion of all radiatively active agents can meaningfully be
represented: in particular, for cloud water, different atmo-
spheric conditions will immediately feed back onto radia-
tion and vice versa. In the CHRM suite of models this is
accomplished by combining contributions from both grid–
scale and subgrid–scale clouds and performing a weighted
average in this fashion:

qlRAD ¼ qlSGS � PCCSGS þ qlGS � PCCGS � 1� PCCSGSð Þ ð1Þ

where qRAD
l is the total liquid water passed to radiation

(gkg�1); qSGS
l is the total liquid water content of subgrid-

scale clouds; qGS
l is the total liquid water content of grid

scale clouds; PCCSGS and PCCGS are the fractional covers
of subgrid-scale and of grid-scale clouds, respectively.
[17] Equation (1) shows how the cloud-radiation feed-

backs are dependent on the convection and stable precipi-
tation parameterizations. For the grid-scale liquid water
content the standard model formulation employs an ap-
proach based solely on relative humidity [Slingo, 1987],
while the subgrid-scale portion is based on the diagnostic
liquid water content provided by the convection scheme.
The following is the standard CHRM implementation of the
grid-scale Partial Cloud Cover (PCCGS):

PCCGS ¼
qTOT
GS

qw* Tð Þ
� RHcrit

RHr3 � RHcrit

0
@

1
A

2

; 0 � PCCGS � 1 ð2Þ

where qGS
TOT = qGS

v + qGS
l is the total water at a grid point;

q*w (T) is the saturation mixing ratio over water at
temperature T; the critical relative humidity at model layer
s is RHcrit = 0.95 � RHr1 s (1 � s) (1 + RHr2 (s � 0.5)),
with RHr1 = 0.8; RHr2 =

ffiffiffi
3

p
; RHr3 = 1.0.

[18] Recently, as a result of detailed analysis of the
CHRM surface energy balance [see Hagemann et al.,
2002], it was decided to implement the Xu and Randall
[1996] cloud diagnostics parameterization as a CHRM
option, so that it could be used to test how a more physically
based cloud cover diagnostic scheme (and associated liquid
water path) would affect the atmospheric extinction of
radiation and thus the surface energy balance. According
to Xu and Randall, we have introduced the following
alternative definition for PCCGS:

PCCGS ¼ RHp 1� exp
�a0q

l
GS

1�RHð Þqw* Tð Þ½ 
g
� �� 	

; 0 < RH < 1

1 ; RH � 1

8<
: ð3Þ

where qGS
l is the grid scale liquid water (gkg�1); RH is the

relative humidity; q*w (T) is the saturation mixing ratio over
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water at temperature T; p = 0.25; a0 = 100; g = 0.49 are the
dimensionless coefficients as in Xu and Randall [1996]. The
two alternative formulations in equations (2) and (3) have
been tested in different model realizations and will be
contrasted later in the results section.

2.2. Model Setup for the Numerical Experiments

[19] The experiments were integrated over a standard
European domain (Figure 1), already used in earlier studies
[Lüthi et al., 1996; Schär et al., 1999; Heck et al., 2001],
with a grid spacing of approximately 56 km and a time step
of 5 min. Twenty levels were used in the atmosphere and
three layers in the soil. Land surface physiography and
phenology were imposed every six hours by interpolating in
space and time the monthly ISLSCP I [Sellers et al., 1994]

climatological fields (e.g., LAI, vegetation cover fraction).
The only other substantial data ingestion deviations from
the operational NWP modeling system are due to the use of
ERA-15 data for the lateral boundaries forcing, with an
updating frequency of six hours, using the Davies [1976]
relaxation technique for temperature, atmospheric water and
wind. Moreover, in the NWP operation of the HRM model,
the soil water profile is calculated by the driving GCM and
used to initialize and nudge the model, with the intent of
controlling 2 m temperatures through a Bowen ratio ap-
proach, and not with multiyear soil water conservation
objectives in sight. The nature of the climate simulations
presented here requires more careful specification of the soil
model framework and of the yearly evolution of surface and
subsurface parameters and processes. For this purpose the

Figure 1. The CHRM domain and subdomains (boxes), superposed on the model orography (m). The
domain comprises 81 (longitudinally) by 91 (latitudinally) grid points. The subdomain labels will be used
subsequently in area-average plots. AL is an abbreviation for Alpine region, DA for Danube catchment,
EA for east Europe, FR for France, GE for Germany, ME for southeast Mediterranean, SP for Spain
(Iberian Peninsula), SW for Sweden (Scandinavia). The model is relaxed to the driving data within the
perimeter strip (8-points wide) outside the largest rectangular area in the figure, which marks the internal
(free) integration region.
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deep soil temperature boundary condition is set to reflect the
1979–1993 surface temperature average at each grid-point,
as is recommended for the extended force-restore soil model
[Jacobsen and Heise, 1982].
[20] Three incremental CHRM model formulations are

introduced, all based on the common model described so
far: the first, SOIL (CHRM 2.1), makes use of an earlier
configuration of the original NWP version of the soil model.
In this version, as a result, infiltration of precipitation is
hindered by the numerics of the vertical grid stretching (with
soil layers corresponding to 2, 8 and 190 cm), and by physical
limitations in the form of artificial impermeability deriving
from an unrealistic treatment of the soil (cold) temperature
barrier affecting soil water conductivity. As previous studies
had not included the full yearly cycle, the lack of appropriate
soil moisture recharge has only been noticed recently.
[21] The second model formulation, HYD (CHRM 2.2),

by contrast, relaxes all artificial in-soil water flux con-
straints (and applies normal soil grid stretching), resulting
in more realistic recharge and latent heat fluxes, including a
reasonable seasonal contribution of transpiration originating
in the root zone.
[22] Model version RAD (CHRM 2.3), which is a further

development from HYD and addresses climatologically
significant negative surface short-wave radiative biases that
are present in SOIL and HYD, is used to uncover the
mechanisms and feedbacks behind the well-known surface
cold bias in the model. The method used here, rather than
resorting to the tuning of the liquid water path fed to the
radiation scheme, consists in calculating the radiatively
active cloud liquid water by using the Xu and Randall
[1996] parameterization. The setup of simulation RAD
preserves therefore the treatment of soil moisture fluxes in
simulation HYD and includes the alternative PCCGS for-
mulation presented in equation (3). The model version used
in the ensemble experiment with different initial conditions
(section 2.3) is RAD (CHRM 2.3).

2.3. Predictability in a RCM

[23] In this study we will conduct and analyze 15-year-
long RCM simulations using different model versions
driven by the ERA-15 analysis (initialized on January 1,
1979). In order to test the sensitivity to initial conditions, we
have in addition designed an ensemble experiment com-
posed of four members, one comprising the first four years
of the standard 15-year simulation performed with model
RAD, the other three consisting in simulations started on 2,
3, 6 January 1979 and continued until 31 December 1982,
but otherwise identical. The set of initial conditions includes
all prognostic variables and also all land surface (snow/ice
cover), soil (complete temperature and moisture profiles) at
initial time and at every grid point. The simulation start
dates were chosen as would be done in a typical NWP
environment, so that individual simulations would be
related through a common synoptic situation and very
similar in terms of soil moisture and snow cover states.
However, our analysis (section 3.3) discards year 1 of the
integration and during this time substantial soil and snow
anomalies are allowed to develop in response to the spread
in atmospheric evolutions in the ensemble.
[24] This IC-based approach differs from the approach

taken by Christensen et al. [2001] for the estimation of

model internal variability, where the ensemble was com-
posed of seven 1-year ensemble members (reapplying
lateral boundaries from a single year) and only soil moisture
was allowed to retain its memory of initial conditions; it
also differs from the approach of Giorgi and Bi [2000],
where different combinations of initial (but atmosphere-
only) and boundary conditions were perturbed in generating
sets of seasonal ensemble members. The simulation length
of each of our ensemble members (four years) provides a
good sample size for the variability imposed by the lateral
‘‘perfect boundaries’’ nudging.
[25] The spread in model solutions generated by our

ensemble (as illustrated in section 3.3) will be used to
estimate the predictability limitations in our modeling
system, as dependent on uncertainties in initial conditions,
and will be presented together with the results from different
model formulations in sections 3.4 and 3.5.

2.4. Observational Data

[26] Data sets used for validation purposes were mainly
extracted from the Climatic Research Unit analyses [New et
al., 1999] and the Alpine precipitation data set [Frei and
Schär, 1998], both at 50 km and available exclusively over
land. Additionally, ERA-15 reanalysis data at T106 trunca-
tion (excluding of course the fields used for the nudging)
were also used for validation purposes in the interior of the
domain, although only in instances in which other data from
independent origins were not available. All data were
available at monthly intervals for the entire simulation
period.

3. Results

[27] The common integration domain is shown in
Figure 1, along with the subdomains to be used for time
series calculations. Two letter labels identifying analysis
domains of interest are listed in the caption and used in
sections 3.4 and 3.5.

3.1. Mean Climate

[28] Previous month-long integrations with the EM fam-
ily of models [e.g., Christensen et al., 1997] have shown
that monthly precipitation biases were at most 1–2 mm
day�1 in winter (EA, FR, AL and SP subdomains) and
�2 to �1 mm day�1 in summer (AL, DA subdomains). The
corresponding biases in temperature were at most �6 to
�2 �C in winter (SW, AL, DA) and +2 to +4 �C in summer
(FR, ME), while over the DA region the summer bias was
between +2 and +6 �C. Another study by Lüthi et al. [1996],
concentrating on ensembles of January and July simula-
tions, reported a similar geographical distribution of errors
for precipitation, but the magnitude of the biases was
smaller than in Christensen et al. [1997], mostly positive
in winter (0.6 to 0.8 mm day�1 over SW, GE and AL) and
negative in summer (�0.6 mm day�1 over GE and AL). In
these studies the model also showed a clear tendency to
produce too much rain in the northern part of the domain,
while becoming too dry in the southern part of the domain.
[29] In the new set of CHRM simulations the model has

been run continuously for the 1979–1993 period, so that
direct comparison to the aforementioned studies is compli-
cated by spin-up and reinitialization issues: the current
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model needs to rely much more on the long-term behavior
of its physical parameterizations than was the case with
month-long and seasonal simulations. This is particularly
relevant for root-zone soil moisture, which is characterized
by a pronounced seasonal cycle and may contribute to the
month-to-month ‘‘memory’’ of precipitation (see also the
discussion by Schär et al. [1999]).
[30] Figure 2 shows maps of 15-year mean precipitation.

Our simulation results are shown in the right-hand panels

and compared with the CRU observed precipitation and the
results of the ERA-15 reanalysis. Comparison shows that
the yearly precipitation fields produced by simulations
SOIL and RAD (which are the two extremes in this set of
model formulations) both reproduce the correct distribution
and amount of precipitation, especially in the region of
localized maxima in northern UK, Scandinavia, the Alps
and the Balkans. These maxima are fairly accurately posi-
tioned, despite some local differences in magnitude and

Figure 2. Yearly mean total precipitation (mm day�1) for the entire simulation period (1979–1993 for
the CRU analysis (top left), the ERA-15 assimilation (bottom left), and CHRM simulations SOIL (top
right) and RAD (bottom right). All plots were masked with the CRU data coverage.
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extent. The north-south distribution tends to point to a slight
overestimation in the north and underestimation in the
south. The analysis in the ERA-15 data set is of coarser
resolution and cannot reproduce some of the narrow regions
of precipitation in the CRU and simulation fields, especially
near coastlines. The southwards extent of the region with
significant precipitation tends to be insufficient in both our
simulations and seems to reflect a tendency for Mediterra-
nean dryness. This bias is also present in the ERA-15 data.

[31] Figures 3 and 4 show the precipitation bias for the
entire domain, calculated as deviations from CRU data for
the 1979–1993 period and averaged for winter and summer.
The winter (DJF) precipitation bias maps show that the
model has a small positive bias in the north, amounting to
less than 1 mm day�1 and underestimation in coastal areas
and over the south, with a typical bias around �1 mm day�1

over Portugal. Some localized regions, over the north of the
UK and the Alps (where a north-south dipole is visible),

Figure 3. Maps of precipitation bias (relative to the CRU analysis, in mm day�1) for winter (DJF) over
the 1979–1993 period for ERA-15 (bottom left) and simulations HYD (top left), SOIL (top right) and
RAD (bottom right). Positive contour lines are continuous, negative contours are dashed.
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show a locally enhanced pattern, but this is in fact due to
1–2 grid points shifts in the simulated precipitation in
relation to the observed simulation. A large portion of the
domain shows a bias contained in the �0.5 to 0.5 mm day�1

interval and differences between model versions are very
small and localized. The ERA-15 precipitation is fairly
successful over coastal areas (except for Norway) but
overestimates precipitation in an extensive region in the
northern part of the domain.
[32] The summer (JJA) bias in Figure 4, on the other

hand, shows that SOIL has a drying problem in large

portions of central Europe and in particular in the Danube
and Alpine regions, with a bias exceeding �1 mm day�1

and �2 mm day�1 respectively. The bias is clearly more
pervasive in simulation SOIL, covering most of central
Europe, while being geographically more contained in
simulations HYD and RAD. A very scattered positive bias
of less than 1 mm day�1 is present in some part of
Scandinavia, which is somewhat worse in the model ver-
sions HYD and RAD with a larger soil moisture availability
and correspondingly larger evapo-transpiration, as will be
seen later in this section. The ERA-15 analysis also shows

Figure 4. As in Figure 3, but for the summer precipitation bias (JJA).
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discrepancies in relation to CRU data, in particular over the
Alps (negative bias) and the UK, but is very successful in
the Danube catchment region. In this regard, however, it
should be recalled that the ERA-15 assimilation, despite
using a fully interactive soil model, applies soil moisture
increments which change the seasonal cycle [Douville et al.,
2000].
[33] Figure 5 shows the complementary horizontal dis-

tributions of winter (DJF) temperature bias at the surface,
which was calculated in reference to CRU temperatures,
corrected for differences in underlying orography (using

CHRM orography as reference), using a 6.5 Kkm�1 lapse
rate, as in Christensen et al. [1997]. The same correction
was applied to ERA-15 temperature data. The bias is
generally negative (especially so over the Alps) and clearly
extends to the entire domain, including small portions of the
southern regions, with local values as low as �4K. Northern
Scandinavia is an exception, with a local warm bias of about
2K. The bias over the Alps is smallest in simulation RAD
while there are some indications that the bias over the UK
and Scandinavia is smallest in simulation HYD. The bias in
the ERA-15 analysis (also reported by Viterbo et al. [1999])

Figure 5. As in Figure 3, but for the winter temperature bias (DJF) in �C.
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is very similar to that found in our model simulations, both
in magnitude and in geographical distribution, especially so
over the Iberian Peninsula and the Alps.
[34] For the summer (JJA), Figure 6 shows how the bias is

more differentiated between individual simulations: it is most
prominent in magnitude and horizontal extent in HYD where
there is a large-scale negative bias between �1 and �3 K,
especially noticeable over the Iberian peninsula and Central
Europe, while simulation SOIL displays a very large region
of positive bias over the SE portion of the domain, often
exceeding +2K. Simulation RAD appears to clearly reduce

the warm bias seen in SOIL, while reducing the cold bias over
most of the domain in relation to HYD, despite remaining
slightly cold over most of the in-land regions and over the
Iberian Peninsula, when compared to SOIL. ERA-15 data
show excellent agreement with CRU data, except over the
Iberian Peninsula, where the analysis indicates an underesti-
mation very similar to the one in the CHRM results.

3.2. Soil Moisture Evolution

[35] The soil moisture evolution in the three model
formulation experiments strongly affects the interannual

Figure 6. As in Figure 3, but for the summer temperature bias (JJA) in �C.
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and seasonal variations in the simulations, as will be seen in
sections 3.4, 3.5 and 3.6. As an example of a regional soil
moisture evolution, Figure 7 compares the soil moisture
levels from the first and last year of the three simulations,
averaged over the Alps subdomain (see Figure 1). Bearing
in mind that 1992 and 1993 were years of extremely low
precipitation in this region (see Figures 9–10), while 1978–
79 was a very wet winter, the January 1979 initial condition,
imposed from ERA-15 analysis, shows all three model

versions very near the field capacity level (shown as a
weighted average over the domain with continuous lines).
Already by inspecting the soil water levels in December
1979, it is clear, however, that the soil moisture in the root
zone is not recharged equally in the three simulations, with
SOIL recharging least and RAD recharging most. Simula-
tions HYD and RAD achieve a stable, repeating soil
moisture cycle between the first and fourth simulation years,
depending on location, by exclusively interacting with the

Figure 7. Time series plot of domain-average deep soil water for the initial year (1979, top panel) and
the final year (1993, bottom panel) of the simulations in mm. Simulations SOIL, HYD and RAD are
represented by dotted, dash-dot and dashed lines, respectively. The average field capacity (FC) and Plant
Wilting Point (PWP) for the domain are also shown as a vertical range corresponding to the two soil
model formulations (SOIL has larger values, corresponding to a deeper root zone).

VIDALE ET AL.: PREDICTABILITY AND UNCERTAINTY ACL 12 - 11



atmospheric water cycle. In simulation SOIL, on the con-
trary, the soil is losing water as a result of underestimating
the recharge, despite sizable access to the climatological
layer, in order to prevent soil moisture values under the air
dryness point (ADP). This behavior has a cumulative effect
over the course of the fifteen years: simulation SOIL is
clearly achieving a much lower water level by 1993 (about
100 mm less over the domain average, much more pro-
nounced locally), with a smaller amplitude of the yearly
cycle, than either HYD or RAD. The difference between
simulations RAD and HYD can be ascribed to a slightly
more vigorous water cycle in RAD and to the warmer
temperatures, which help water infiltration into the soil,
due to the less frequent triggering of soil impermeability
caused by freezing.

3.3. Predictability of Seasonal Means

[36] Prior to analyzing the interannual characteristics of
the simulations (including biases and sensitivities to dif-
ferent physical parameterization choices), the predictability
of seasonal means by a given model version is assessed
using an ensemble experiment in which the model formu-

lation is kept fixed (RAD). The ensemble consists of four
simulations with durations of 4 years, and these are
initialized from slightly different initial conditions (see
section 2.3).
[37] Examples of results are shown in Figure 8, in the

form of scatter diagrams, representing the seasonal mean
responses of the four ensemble members over one particular
subdomain (Alps), and illustrating the uncertainty associated
with unforced internal variability induced by varying the
initial conditions. Each data point represents a spatial
average for a particular ensemble member over a particular
season (left panels are for winter, and right panels are for
summer), for total precipitation (top, mm day�1) and for
2 m temperature (bottom, �C), respectively. The results in
Figure 8 show that, given an initial (January 1979) model
spread of about 0.4 mm day�1 (and corresponding soil
moisture and snow cover values) together with a 1.6 K
temperature spread, the summer precipitation uncertainties
arising from the model’s predictability are contained in a 0.2
to 0.8 mm day�1 interval, while temperature uncertainties in
the summer range from 0.3 to 0.6 K. The behavior of
individual model realizations is in no way systematic, be it

Figure 8. Scatterplots of spatially averaged results (Alps subdomain) from the four ensemble members:
precipitation (top panels, mm day�1) and temperature (bottom panels, �C) during the winter (DJF, left
panels) and the summer (JJA, right panels) seasons. The individual years (1979 to 1982) are represented
on the abscissa; the data corresponding to the individual realizations are represented by symbols.
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by variable or by season. The vertical spread between data
points is a measure of the limited predictability due to the
chaotic nature of the model’s dynamics; this uncertainty
estimate will be later contrasted with the uncertainties
stemming from alternative model formulations.
[38] To this end, we consider only the years 1980 to 1982,

since January 1979 is made special by spin-up issues and
also contaminated by different simulation lengths: even a
single storm, missed by starting the model on subsequent
days, could locally affect the monthly means and prevent
comparability with 1980–1982 winter means. After remov-
ing the interannual variability, which was done by calculat-
ing the yearly anomalies of each ensemble mean by season
(with respect to the 1980–1982 mean), the resulting
12 values were used to calculate an anomaly variance at
each grid point. Subdomain standard deviations were
thus derived and applied to the comparative analysis of
model uncertainties stemming from model formulation
(Figures 9–12, which are introduced in the next section).

3.4. Interannual Variability of Precipitation

[39] Previous EM-CHRM studies considering interannual
variability [e.g., Christensen et al., 1997; Lüthi et al., 1996;
Fukutome et al., 1999; Heck et al., 2001] have focused on
ensembles of short, 1–5 month simulations, to establish the
statistical significance of the model’s skill in representing
interannual variability of precipitation and temperature. In
particular, Lüthi et al. [1996] have shown that, in general,
the model possesses some skill at representing interannual
variability of precipitation in winter, when the simulated
signal is large, while not being able to achieve the
same level of skill in summer, when the performance of
the model has to rely more on the quality of its physical
parameterizations.
[40] In this subsection we analyze the interannual vari-

ability in precipitation for the 1979–1993 period and the
ability of the CHRM model to regionally represent it. The
results are presented in the form of scatter diagrams of
model and observed (CRU) subdomain seasonal averages.
Before proceeding, we use the top left panel of Figure 9
(subdomain SW) to explain their use. On the abscissa are
CRU observational data, while on the ordinate are model
results. In each panel, the results from the three simulations
SOIL, HYD and RAD, as well as the ERA-15 reanalysis,
are represented (using different symbols and a common year
label), while each of the three simulations, together with
ERA-15 analysis, is summarized by its regression line.
Perfect simulation data would be located on a diagonal line
(left bottom to right top) across each panel. This type of plot
allows to distinguish three different types of error. First, an
overall wet or dry bias can be identified from a location of
the regression line above or below the diagonal (e.g., ERA-
15 and RAD). Second, a systematic bias in representing the
interannual variability is present when the slope of the
regression line does not match that of the diagonal (e.g.,
ERA-15 has a tendency to overestimate precipitation more
in wet years than dry years in absolute terms, albeit not
necessarily so in relative terms). This behavior will be
referred to as a misrepresentation of the ‘‘precipitation
sensitivity,’’ and it pinpoints a problem in simulating differ-
ences (here between wet and dry seasons). This kind of
consideration may be relevant to assess the suitability of a

model for conducting climate change scenarios, as is
recommended in the latest IPCC [2001] report. Third, the
scatter of individual data points around the regression line
represents an unsystematic error contribution. This error
contribution may partly be explained by the limited pre-
dictability of the system (see the previous section), which is
summarized for each variable and region by the grey
polygon of height 2 � s (standard deviation of ensemble
results from the previous section) straddling the ‘‘perfect
simulation’’ diagonal across each diagram. A ‘‘perfect
model’’ (i.e., a model with perfect physics and dynamics),
driven by perfect boundary conditions, would produce
results contained in this grey area, also assuming perfectly
accurate observations.
[41] The winter precipitation in Figure 9 shows very

good skill of the model at reproducing interannual variabil-
ity, as data lie principally along the diagonal over most
regions. The subdomains with the best reproduction of the
signal are the Alps and France, for which both precipitation
amount and sensitivity are almost perfectly represented for
all four data sets. Germany, Spain, SE Mediterranean and
the Danube region show good simulation quality, but
slightly less so in years of high precipitation, which are
overestimated in the north and underestimated in the south;
Scandinavia (SW) and the east (EA) domains display the
largest errors, with pronounced overestimation in SW (but
less so than ERA-15) and poor slope of the regression line
for SP and ME. Modeled precipitation regression lines over
subdomains SW, EA, GE, DA show some degree of
overestimation, but at the same time lie between ERA-15
and CRU estimates. It is of interest to note that, for most of
the data sets, the slope of the regression line corresponds
very closely to reality (is parallel to the diagonal), but re-
mains poorest in the south. The uncertainty associated with
unforced variability, ranging from 0.2 to 0.6 mm day�1, is
largest in subdomains further from the entry point of storms
(NW), and is generally at least as large as the spread in
results among the individual model versions.
[42] During summer (Figure 10) the grey area is much

thicker, in response to the reduced predictability. The results
nevertheless show how the SOIL simulation tends to be
consistently too dry, especially in the south and southeast,
and also how the slope of the regression line (the precipi-
tation sensitivity) is generally underestimated. The dry bias
is substantially reduced in simulation HYD and RAD over
most domains, while the underestimation of the precipita-
tion sensitivity is at best only marginally improved. The
regions displaying the most pronounced dry bias are the
Alps and the Danube; Germany and France are relatively
better represented, while the representation of interannual
variability of precipitation over Spain and the Mediterra-
nean shows surprisingly good agreement with observations,
despite the small signal and the identified bias. Simulation
RAD is closest to the observational data in the majority of
subdomains, except in SW and FR. The uncertainty stem-
ming from alternative initial conditions is larger than in
winter, ranging from 0.2 to 1 mm day�1, but in some
subdomains is comparable to the differences stemming from
model formulation, since individual model versions produce
quite different bias and precipitation sensitivity results. The
magnitude of the uncertainty is generally larger in the east
and near mountain ranges.
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[43] In general, it is quite clear how the signal under study
displays enough interannual variability as to allow the
(1979–1993) model errors to be relatively large, while still
enabling the model to claim skill at representing this
variability over most subdomains over the entire yearly
cycle. The skill, however, is least in the summer period and
further from the principal entry point of storms, at the NW
corner of the domain.

3.5. Interannual Temperature Variability

[44] The winter temperature scatter diagrams in Figure 11
show for most domains a good skill at representing the
temperature sensitivity (the slope of the regression lines),
while there is a cold bias as large as �2K in several domains
(e.g., France, Spain and Alps). Differences between indi-
vidual simulations are quite small, but comparisons to the
uncertainty associated with limited predictability (ranging
from 0.1 to 0.6 K) indicate that model formulation is a more
important source of uncertainty for this variable in winter.
[45] Summer temperature scatter diagrams in Figure 12

show how most data are roughly aligned parallel to the
diagonal (thus correctly representing temperature sensitiv-
ity), but the systematic errors are quite large, as much as
2K. The temperature field displays the largest differences
between simulations, with simulation SOIL always much
warmer and simulation HYD much colder than the other
two. Over the Danube region, simulation SOIL is system-
atically over 1 K warmer than CRU, while simulation HYD
is systematically 1K colder; simulation RAD has the least
bias, well in agreement with ERA-15. The regression line of
simulation SOIL is closest to the diagonal in several
domains, but this is a clear case of error compensation
and occurs at the expense of pronounced underestimation of
summer precipitation in most areas (contrast with Figure
10). Simulation HYD is generally the coldest, while simu-
lation RAD is a clear improvement over HYD in all
subdomains, being the one with the least bias over the
Danube region, and being within 1K error bars over the
Alps, Sweden, Germany, France and the SE Mediterranean,
with the exception of Spain. It is also noteworthy that ERA-
15 has quite an excellent behavior over most subdomains,
with the exception of Spain, which shows a bias signature
very similar in geographic distribution and magnitude to the
one in our model.
[46] The uncertainty stemming from model predictability

(0.2 to 0.6 K) is comparatively much less important for a
variable and period in which large discrepancies exist
between solutions produced by alternative model configu-
rations, and especially so in the south.

3.6. Surface Energy and Water Fluxes Effects

[47] The soil-atmosphere feedbacks in the water cycle,
which affect the land surface temperature and precipitation

budgets, can be better understood by considering the surface
energy and water fluxes and contrasting them in all three
model formulation experiments. The fields which are
mostly affected in the three different simulations are the
surface net short wave flux and the surface latent heat flux.
The three experiments are compared with the ERA-15
fluxes in Figures 13 and 14, this time in the form of the
mean seasonal cycle of the 15-year period, again organized
by region. The use of ERA-15 solar fluxes as a proxy
for observations is justified by Wild et al. [1998], who
showed that the incoming solar radiation is in general well
reproduced by ERA-15 and appropriate for this type of
basic validation in regional climate studies. It must
be remembered, however, that the latent heat fluxes in
ERA-15 are mostly a model product, despite the continuous
data assimilation.
[48] The absorbed solar radiation of simulation SOIL

(Figure 13) is in good agreement with the fluxes of ERA-
15, with a maximum local overestimation of 20 Wm�2 in
subdomain DA (corresponding to summer positive temper-
ature biases) and an underestimation over subdomain SW
(�40 Wm�2 at the peak). Most subdomains exhibit
however significant drying (in several regions as much as
40 Wm�2 at the peak of the growing season), as evident
from the depressed latent heat flux simulated by the model
(Figure 14), also associated with a general attenuation of the
soil moisture annual cycle, as was seen in Figure 7.
[49] The surface latent heat fluxes (seen in Figure 14) in

model HYD are in better agreement with those of ERA-15
than those in SOIL (except over SW and GE where some
overestimation is present). However, this extra water flux
into the atmosphere feeds the almost exclusive growth of
low-level clouds (not shown) which have the general effect
of depressing the net surface short wave over the growing
season by 10–30 Wm�2: in Sweden the June biases of
�40 Wm�2 are made to be about �60 Wm�2 in this model
formulation.
[50] Model RAD, with about the same total water content

as HYD but a different diagnostic formulation of cloud
cover by layer (and corresponding liquid water path), dis-
plays solar radiation with the opposite tendency, substan-
tially correcting the bias by almost 40 Wm�2 over Sweden
and also over Germany, in eastern Europe and the Alps. The
corrections due to RAD are most pronounced in central and
northern Europe and are also found (although with slightly
smaller magnitude) in the net radiation plots (not shown), so
that the response to the introduction of the Xu and Randall
[1996] cloud diagnostic is clearly of benefit to the surface
energy balance and explains the improved results in the
temperature plots. The representation of the surface latent
heat fluxes in RAD is very similar to that in HYD.
[51] The short wave plots for the southern domains (SP,

ME) show that radiation is rather well represented in this

Figure 9. (opposite) Winter (DJF) scatterplots of precipitation (mm day�1) showing monthly domain means of
simulations (ordinate) versus observations (CRU, abscissa) for the subdomains shown in Figure 1 and the 1979–1993
period. Each data set is represented by symbols and a regression line: ERA-15: triangles and double-dot-dashed line; SOIL:
plus symbols and dotted line; HYD: square symbols and dash-dotted line; RAD: crosses and dashed lines. Individual data
points for the RAD data set are also identified by year labels. ‘‘Perfect simulation’’ data would lie on a diagonal line across
the plot (bottom left to top right). The uncertainty related to the predictability of the system is represented by the grey area
straddling this diagonal.
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Figure 10. Same as Figure 9, but for JJA.
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Figure 11. Same as Figure 9, but for DJF temperature (�C).
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Figure 12. Same as Figure 11, but for JJA temperature (�C).
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Figure 13. Mean seasonal cycle (1979–1993) of net solar radiation at the surface, averaged over
subdomains (Wm�2).
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Figure 14. Mean seasonal cycle (1979–1993) of latent heat flux from the surface, averaged over
subdomains (Wm�2).
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region and insensitive to model formulation. The latent heat
flux systematic difference from ERA-15 for these regions is
significant, but also suggestive of spring and fall errors in the
initiation and termination of vegetation activity. The static
phenology in the ERA-15 land surface parameterization is
mostly responsible for these latent heat flux differences,
which also helps explain the ERA-15 cold bias during the
cold season in the southern portions of the domain (espe-
cially Spain), where sufficient energy is available but veg-
etation should be dormant instead of transpiring.

4. Discussion of the Simulated Water
and Energy Cycles

4.1. Comparison of Results From Predictability
and Model Formulation Experiments

[52] Uncertainties originating from limited model predict-
ability have been found to be generally smaller than those
originating from alternative model formulations. Unlike the
results from experiments with alternative model formula-
tions, no systematic behavior was uncovered in the time
frame of the ensemble simulation, with a spread of solutions
continuously converging and diverging, depending on
location, variable and season, but no defined bias or trend.
The summer precipitation field appears to be the one with
the greatest sensitivity to initial conditions (although in
general of comparable or smaller magnitude than the
sensitivity to model formulation), arising from soil moisture
and snow cover memory effects, the timescales of which
will need to be investigated further.

4.2. Mechanisms Uncovered

[53] The results of the experiments with alternative model
formulations uncovered clear mechanisms associated with
the water cycle: a compromised soil moisture recharge (in
SOIL) causes systematic early depletion of soil water,
leading to a dry warm bias in summer. Comparatively less
low-level cloud formation in the growing season and limited
latent heat fluxes also contribute to a warmer summer
climate. A more realistic, self-sustaining, water cycle (in
HYD) also enhances summer precipitation, but allows
excessive interplay of low-level cloud-radiation feedbacks,
which, together with the enhanced latent heat fluxes over
the growing season, produces a climate significantly colder
than the observed climate. An alternative cloud-radiation
feedback intensity, achieved by altering the cloud diagnostic
(in RAD) and the resulting short wave attenuation through-
out the troposphere, produces a more reasonable radiative
balance at the surface (and associated temperatures) while
sustaining a realistic water cycle.

4.3. Biases and Their Sources

[54] Interpreting these results in terms of biases and
related compensation of model errors, it is clear that model
SOIL produces realistic surface temperatures during the
growing season (except over the DA region) by compro-
mising the soundness of its water cycle. This is character-
ized, for instance, by the significant dry biases and the
serious depletion of the soil moisture reservoir. The surface
drying contributes to the substantial precipitation biases,
which are largest over the eastern side of the domain and in
years of relatively abundant precipitation. The unrealistic

representation of the energy and water cycles and their
interplay means that many of the apparently good results in
model SOIL are in fact due to compensating model errors.
[55] Model HYD, on the other hand, is capable of

representing a sound and self-sustaining water cycle, mostly
addressing the precipitation, latent heat flux and soil mois-
ture errors in model SOIL, but at the cost of introducing a
severe surface cold bias, partly explained by an underesti-
mation of short wave radiation at the surface.
[56] Compared with the other two model versions, model

RAD more realistically represents both the energy and water
cycles, with the smallest net short wave and latent heat flux
biases, coexisting with a sustainable soil moisture cycle and
one of the best representations of precipitation, in both
seasons. The summer temperature bias is still significant,
but represents an important improvement over the biases in
models SOIL and HYD, while it also derives from a more
realistic net surface radiative balance.
[57] It is particularly interesting to notice that the increase

in solar radiation between simulations HYD and RAD and
the increase in evapo-transpiration between simulation
SOIL and HYD are just about the same and occur over
the same regions. This again confirms the diagnostic of
error compensation in the treatment of the soil-water and
energy cycles in SOIL. The Xu and Randall [1996] correc-
tions are largest in regions of high mean cloudiness (e.g.,
Scandinavia) and are much smaller in regions of infrequent
cloud cover (e.g., Spain), so that temperature biases are
virtually unaffected there. The summer positive bias in net
short wave, which is present in model RAD over the DA
subdomain, corresponds to the largest deficit in latent heat
flux over the domain. The same observation applies, with
smaller involved amplitudes, to subdomains SP and ME.
[58] The uncovered mechanisms and related error com-

pensations do not however explain all biases. A reasonable
interpretation of the winter surface (2m) temperature bias is
that it partially reflects the winter error in the ERA-15 data
(which consists in a domain-wide -2K bias [see Viterbo et
al., 1999]). A more complete explanation needs to also take
into account the characteristics of the force-restore soil
model used in the CHRM, which has only two layers, and
therefore introduces large phase and amplitude errors at
timescales other than diurnal and annual (see also the
discussion by Jacobsen and Heise [1982]). The soil model
cannot retain sufficient memory of the summer heat storage
(and is also influenced by a too cold boundary condition at
the lowermost level, corresponding to the 15-year surface
temperature average in ERA-15). The model therefore tends
to quickly reflect and respond to the cold bias in the driving
data traveling through the domain from the lateral bound-
aries. Moreover, CHRM underestimates the diurnal temper-
ature range (not shown, but confirmed from a comparison to
CRU data). The bias is in general most evident in the
maximum (daytime) 2m temperature field, both in summer
and winter (albeit almost exclusively in the southern
extremes of the domain for winter) which is the field
affected most by both the evapo-transpiration corrections
in HYD and by the cloud-radiation alterations in RAD. The
impact of the grid-scale liquid water diagnostics scheme,
revealed by differences in simulation RAD versus simula-
tion HYD, is also confined almost exclusively to daytime
maximum temperatures.
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[59] During the summer, when the ERA-15 temperature
bias is relatively small, advection is relatively weak and the
model is free to achieve its own surface energy balance.
This is much more meaningful under the new conditions
imposed by the Xu and Randall cloud diagnostics, despite
the fact that its partitioning into sensible and latent heat is
locally still favoring too high Bowen ratios.
[60] As expected, winter precipitation appears to be well

represented, despite some local overestimation, and appears
to be unaffected by the physical parameterization changes
introduced.

5. Conclusions and Outlook

[61] Both the predictability of the climate system and the
uncertainties related to model formulation must be consid-
ered in testing, understanding and improving a climate
modeling system. Both factors have been addressed in this
study, which expands the interannual variability method
already applied by Lüthi et al. [1996]. The nature of the
methodology, and the involved computational costs, indi-
cate that RCMs can provide sound and affordable test beds
for physical parameterization packages in the context of
climate studies. Analysis of our simulation results suggests
the following:
[62] 1. The model has skill at representing interannual

variability in precipitation and surface temperature, more so
in winter, despite fairly sizable (but within the state of the
art) biases in both precipitation and temperature.
[63] 2. Interannual variations in temperature are generally

well represented, while the model better represents precip-
itation in relatively dry years, especially in summer and in
the south.
[64] 3. The comparison of model predictability and

uncertainties stemming from different model formulations
indicates that the latter are relatively more important over
most of the European region, except for precipitation in
summer, where some subdomains indicate a moderate loss
of predictability. The relevance of local physical processes
is enhanced at times when the large scale driving has less
influence, most notably in summer, and farther from the
entry region of storms.
[65] 4. If the in-soil water flux is not realistically repre-

sented, significant drying will result in the root zone after
the first few years of simulation, creating corresponding
deficits in precipitation and large positive temperature
biases in most central European regions, especially in the
Danube catchment region.
[66] 5. Correcting the large deficit in surface solar radi-

ation has improved the model’s representation of the energy
and the water cycles, especially in summer; this is also true,
in winter, of elevated regions such as the Alps.
[67] The new series of simulations that will be undertaken

in the course of the next year will use driving data from
HadAM3 and ECHAM5 simulations for current climate
conditions, and also, as soon as available, from ERA-40
data; this should allow for better understanding of the
influence of the lateral boundary forcing on the remaining
biases. Tests will also be performed with an expanded
domain, in order to study the ability of the model to develop
its own solution in a larger interior region. Furthermore, a
more advanced and comprehensive SVATS will be coupled,

including a multilayer diffusive soil thermal model, which
should address the limitations of the force-restore method
for this type of long term studies.
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