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The consistency of ensemble forecasts from three global medium-range prediction
systems with the observed transition behaviour of a three-cluster model of the North
Atlantic eddy-driven jet is examined. The three clusters consist of a mid jet cluster
taken to represent an undisturbed jet and south and north jet clusters representing
southward and northward shifts of the jet. The ensemble forecasts span a period
of three extended winters (October–February) from October 2007–February 2010.
The mean probabilities of transitions between the clusters calculated from the
ensemble forecasts are compared with those calculated from a 23-extended-winter
climatology taken from the European Centre for Medium-Range Weather Forecasts
40-Year Re-analysis (ERA40) dataset. No evidence of a drift with increasing lead time
of the ensemble forecast transition probabilities towards values inconsistent with
the 23-extended-winter climatology is found. The ensemble forecasts of transition
probabilities are found to have positive Brier Skill at 15 day lead times. It is found
that for the three-extended-winter forecast set, probabilistic forecasts initialized in
the north jet cluster are generally less skilful than those initialized in the other
clusters. This is consistent with the shorter persistence time-scale of the north jet
cluster observed in the ERA40 23-extended-winter climatology. Copyright c© 2011
Royal Meteorological Society
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1. Introduction

The concept of weather regimes has long been invoked
to explain the perception that weather conditions appear
to persist longer than the passage of individual systems.
This idea was initially closely related to the concept of
weather analogues: the assumption that similar large-scale
flow patterns are associated with similar weather types and
evolve in a similar manner. In this vein, catalogues of
regime classifications such as Grosswetterlagen (Hess and
Brezowsky, 1952) aimed to provide a qualitative partitioning
of the observed atmosphere into a discrete set of flow

types, each associated with different weather conditions.
The advent of dynamical systems theory and the discovery
of chaos (Lorenz, 1963) both debunked the atmospheric
analogues idea and appeared to provide an explanation for
the existence of atmospheric regimes. In low-dimensional
nonlinear systems, the regimes are associated with stable
(or weakly unstable) equilibrium solutions to the dynamical
equations to which the state remains close. The wings
of the Lorenz (1963) ‘butterfly’ are the classic example
of this behaviour. Whilst there have been attempts to
explain atmospheric regimes through equilibrium solutions
to low-dimensional atmospheric models (Charney and
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DeVore, 1979; Crommelin, 2003), the link to high-
dimensional atmospheric global circulation models and the
actual atmosphere remains unclear. Regimes in such high-
dimensional systems are usually diagnosed from output data
by examination of probability density function estimates for
evidence of multimodality (Silverman, 1981; Corti et al.,
1999; Ambaum, 2008; Woollings et al., 2010b) and applying
statistical techniques such as clustering (Smyth et al., 1999;
Hannachi, 2007; Cassou, 2008; Franzke et al., 2009), rather
than by analysis of the dynamical equations themselves.

One of the motivating factors for interest in regimes
is their implications for predictability. These implications
are something of a double-edged sword: on the one hand,
knowing that you have entered a persistent regime may
provide useful predictive skill for extended-range forecast-
ing, but conversely failing to predict a change of regime
accurately may lead to a significant loss in skill. One of the
stated purposes of medium-range ensemble forecasting is
to account for the possibility of small uncertainties in initial
conditions leading to large differences in forecast outcomes,
due to the nonlinear nature of the atmosphere. As such, if
regimes (which are an inherently nonlinear phenomenon)
exist, ensemble forecasts should, by design, be able to capture
the transitions between them. Regardless of the existence
(or not) of atmospheric regimes, cluster analysis provides a
low-dimensional approximation to the atmospheric phase
space, which optimally characterizes the broad characteris-
tics of atmospheric data with respect to a chosen measure.
This article addresses the question of whether operational
medium-range ensemble forecasts replicate the statistics and
predict the future state of such low-dimensional represen-
tations of the atmosphere. This is approached by examining
the ability of the global 15 day ensemble forecasts from
three different forecasting centres taken from the Thorpex
Interactive Grand Global Ensemble (TIGGE) dataset (Park
et al., 2008) to replicate the transition statistics of a three-
cluster model designed to characterize the behaviour of the
North Atlantic eddy-driven jet (Woollings et al., 2010a).
The ensemble forecasts used in the study come from the
European Centre for Medium-Range Weather Forecasts
(ECMWF), the (UK) Met Office and the Meteorological
Service of Canada (CMC). For details on the forecast models
and data the reader is referred to http://tigge.ecmwf.int.

The rest of the article is divided into four sections. Section
2 provides an introduction to the three North Atlantic
eddy-driven jet regimes and the clustering method used
to identify them in forecast data. Section 3 contains an
examination of the ability of the forecast models to replicate
the climatological probabilities of regime transition. In
section 4 the skill of the forecasts in predicting regime
transitions is assessed. A summary and conclusions are
contained in section 5.

2. Cluster and transition probability definition

Following Woollings et al. (2010a) we decompose the low-
level zonal wind in the North Atlantic sector into three
possible jet configurations. These three configurations are
identified from low-level zonally averaged zonal wind in the
North Atlantic sector and are designed to be representative
of the North Atlantic eddy-driven jet. The use of low-
level winds as a diagnostic is designed to separate the
eddy-driven component from the subtropical jet, since the
former is assumed to have a signal throughout the depth of

the atmosphere, whereas the latter is assumed to be more
confined to the upper levels. The physical motivation behind
this assumption is the interpretation of the subtropical jet
as a vertically confined upper-level baroclinic jet in vorticity
balance with the meridional overturning circulation. By
contrast, the eddy-driven jet is assumed to have a more
barotropic structure reflecting the tendency of synoptic
eddies to reduce baroclinicity by accelerating the westerly
flow throughout the depth of the atmosphere (Hoskins et al.,
1983). We define the North Atlantic eddy-driven jet profile
to be the zonally and vertically averaged zonal wind between
λ1 = 300◦ and λ2 = 360◦E, and between the p1 = 700 hPa
and p2 = 925 hPa pressure surfaces, i.e.

U(φ, t) = 1

NpNλ

p2∑

p=p1

λ2∑

λ=λ1

u(λ, φ, p, t),

where φ and t denote latitude and time, respectively, and Np
and Nλ are the number of levels and grid points between p1
and p2 and λ1 and λ2 respectively.

The three jet clusters are identified by K-means clustering
(Jain, 2010) with three degrees of freedom, applied to
daily mean jet profiles calculated for European Centre
for Medium-Range Weather Forecasts 40-Year Re-analysis
(ERA40) data (Uppala et al., 2005) covering the extended
winters (October–February) from October 1978–February
2002. The operation of K-means on the data may be
summarized as follows. With the choice of three degrees
of freedom, the K-means algorithm identifies three jet-
profile cluster centroids which define a partitioning of the
jet-profile data into three clusters. The partitioning is defined
such that each jet profile, U(φ, t), is allocated to the cluster
with centroid, Uc(φ), closest to it in the squared Euclidean
norm,

|U − Uc|2 =
φ2∑

φ=φ1

[U(φ, t) − Uc(φ)]2 .

The K-means algorithm identifies the three centroids that
minimize the sum of the squared Euclidean distances of all
jet profiles from their respective centroids.

Figure 1 shows the three cluster centroids, which are
labelled south (‘S’), mid (‘M’) and north (‘N’) to reflect
the latitude of the wind maxima associated with each.
Figure 2 shows composites of 500 hPa geopotential height
anomalies obtained from the mean over all days allocated to
each regime in the 23-extended-winter climatology. These
composites also show a close qualitative similarity to those
obtained by Woollings et al. (2010a) using the latitude of
the maximum of the zonal jet profile to partition the data.
The mid and south jet composites are reminiscent of the
positive and negative North Atlantic Oscillation (NAO)
regimes identified by Cassou (2008).

The choice of the number of degrees of freedom for the K-
means algorithm can be somewhat arbitrary (Christiansen,
2007), particularly for atmospheric data that does not
usually provide strong evidence of multimodality; see e.g.
Stephenson et al. (2004) and Ambaum (2008). In the case of
the work presented in this article, the choice of the number
clusters is based on both the evidence of three preferred jet
locations presented by Woollings et al. (2010a) and the more
heuristic argument that the three clusters appear adequately
to capture the qualitative behaviour observed in time series
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Figure 1. Jet-profile cluster centroids obtained by K-means clustering (with
three degrees of freedom) of ERA40 jet-profile data covering 23 extended
winters (ONDJF) from October 1978–February 2002.

of the jet profile U . Here the cluster analysis is not intended
to provide evidence of multimodality but rather to provide
a simple means of characterizing the variability of the jet
which can be readily applied to forecast data.

The choice to use jet profiles to partition the data rather
than a partitioning based on the jet maxima, as might be
suggested by the work of Woollings et al. (2010a), is made
because it is found to produce much greater consistency
when applied to different datasets. As a test of consistency,
the K-means algorithm was applied to jet profiles from
the National Centers for Environmental Prediction (NCEP)
reanalysis (Kalnay et al., 1996) for the same 23 extended
winters, producing cluster centroids with mean-squared
difference (normalized by mean-squared amplitude) from
the ERA40-derived clusters of ∼ 0.01 (once the centroids
were interpolated on to the same grid) and∼ 95% agreement
in the allocation of data to clusters. By contrast, tests of K-
means and Gaussian mixture models applied to the latitude
of the jet maxima could only produce ∼ 75% agreement
between the allocation of the data to clusters. The greater
consistency between the clustering of the two datasets when
jet-profile data is used is probably attributable to the fact that
the K-means algorithm picks out the large-scale structure
of the jet profiles and is therefore less sensitive to noise and
resolution.

The result of the K-means clustering is that the ERA40
jet-profile data, U(φ, t), is reduced to an indicator variable,
Xt , which takes one of the values S, M or N depending on
which cluster the jet belongs to at time t, i.e.

Xt(U(φ, t)) = argmin
c=S,M,N

{
|U − Uc|2

}
.

The TIGGE dataset is reduced to a similar form using the
cluster centroids obtained from the ERA40 data.

N

M

S

Figure 2. Composite of ERA40 500 hPa geopotential height anomalies
calculated from all ONDJF days (October 1978–February 2002) allocated
to each of the three jet profile clusters. From top to bottom: north jet days,
mid jet days and south jet days. Contour interval is 25 m; shading indicates
positive (anticyclonic) values; the thick line is the zero contour. Latitudinal
grid lines are shown every 15◦, longitudinal grid lines every 30◦.

To gain some insight into the manner in which the jet
moves between clusters in time, and to facilitate comparison
between analyses and ensemble forecasts, we define a lagged
conditional probability of cluster membership between two
clusters A and B as

PA→B(τ ) = P (Xt+τ = B | Xt = A) .

This is the probability that the jet belongs to cluster B at
time t + τ given that it belonged to cluster A at time t. This
probability measure takes no account of the values taken
by X in the time interval between t and t + τ . Despite this,
for small τ , one can loosely interpret the PA→A(τ ) as the
probability of A persisting for τ days, and PA→B(τ ) as the
probability of transition from A to B in time τ . For this
reason and for concision we shall refer to the probabilities
PA→B loosely as transition probabilities.

Given a time series Xt , the transition probability PA→B
is estimated by the following steps: take the indices of the
subset of all time points for which Xt = A; count the number,
NA, of data points in the the subset; shift the indices of the
subset forward by τ ; count the number of data points, NB,
in the forward-shifted subset that belong to cluster B; the
transition probability is then given by PA→B = NB/NA.

Since a single ensemble forecast contains multiple
estimates of the atmospheric state at a lead time τ , it
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is possible to use the ensemble to calculate probabilities
of individual events. The simplest strategy for converting
ensembles into a probabilistic prediction of a categorical
event is to use the fraction of the ensemble for which the
event occurs as an estimator. For TIGGE ensemble forecasts
we define the predicted probability of membership of the
cluster B at lead time τ to be the fraction of the ensemble
in cluster B at lead time τ . For an ensemble forecast with
initial analysis in cluster A, the predicted probability of
membership of cluster B at lead time τ is taken as analogous
to a predicted transition probability PA→B(τ ); note that this
definition ignores the fact that adding perturbations to the
initial analysis to create the ensemble of initial conditions
means that not all ensemble members are guaranteed to be
in cluster A initially.

3. Comparison of ‘climatological’ transition probabili-
ties from forecasts with reanalysis

The first question to ask when assessing whether the fore-
casting systems are able to replicate the observed clustering
behaviour is whether their statistics lie within the bounds
of the observed climatology. To answer this question,
we compare transition probabilities calculated using the
23-extended-winter ERA40 climatology (ONDJF, October
1978–February 2002) with those calculated using three
extended winters of TIGGE operational analyses (ONDJF,
October 2007–February 2010) and those obtained by
averaging the predicted transition probabilities from TIGGE
ensemble forecasts for the same three extended winters.

Figure 3 shows the transition probabilities calculated from
the ERA40 data (thick solid lines) and those calculated
from TIGGE ECMWF operational analysis data (thick
dashed lines); note that the use of Met Office and CMC
analyses rather than those from ECMWF is found to make
negligible difference to the results. To give an indication of
how much transition probabilities calculated from a three-
extended-winter subsample are expected to deviate from
those of a longer term climatology, the grey shading shows a
relative frequency histogram of the transition probabilities
calculated using three-extended-winter subsamples of the
ERA40 data. The three-extended-winter subsamples are
overlapping. Each subsample comprises adjacent winters as
this most closely resembles the nature of the three-extended-
winter TIGGE dataset. For each transition probability
PA→B, the thin horizontal black line indicates climatological
occupancy, P(X = B), of the cluster B calculated for the
ERA40 data; i.e. the total fraction of the ERA40 data in
cluster B.

The smallest values of τ for which the ERA40 tran-
sition probabilities (thick solid lines) intersect the clima-
tological occupancy indicates the time-scale over which
the transition probability converges to the climatological
occupancy; this may be thought of as the time-scale over
which knowing the state at time t provides no more infor-
mation about the state at t + τ than could be inferred by
the climatological occupancy. Comparing the climatological
transition probabilities (thick solid lines) with the climato-
logical occupancy (thin horizontal lines), it is evident that
transition probabilities involving only the south and mid
clusters (PS→S, PS→M, PM→S, PM→M) remain noticeably
different from the climatological occupancy out to 15 days.
In fact with further analysis (not shown) it is found that
τ needs to be longer than ∼ 30 days before the two lines

intersect. This is consistent with the south and mid clusters
being related to the negative and positive phases of the NAO,
which is known to possess a long decorrelation time-scale
(Ambaum and Hoskins, 2002; Keeley et al., 2009). By con-
trast transitions involving the north cluster (PS→N, PM→N,
PN→S, PN→M, PN→N) approach very close to or intersect the
climatological occupancy within 15 days.

The variation in the transition probabilities calculated
using different three-year periods of the ERA40 data (grey
shading) is large. This large variation means that one can
reasonably expect the transition probabilities calculated
using three years of TIGGE data to differ significantly
from those of the longer term ERA40 climatology. This
is born out by the thick dashed lines in Figure 3, which show
the transition probabilities calculated using the ECMWF
operational analysis data from the TIGGE data. However,
despite their deviation from the long-term climatology,
the transition probabilities calculated using the TIGGE
analysis do not lie beyond the grey shaded area and are
therefore not unprecedented given the ERA40 climatological
record. Whether the variation of the transition probabilities
calculated for three-extended-winter periods should be
interpreted as sampling error or as non-stationarity in the
statistic itself is an issue beyond the scope of this work.
The primary focus is the assessment of the consistency of
the ensemble predicted transition probabilities with those
of analysis/re-analysis.

To see clearly the relationship between the TIGGE ense-
mble predicted transition probabilities and those calculated
from the ERA40 and TIGGE analysis data, Figure 4 shows
the deviations

$PA→B = PA→B − Pclim
A→B

of transition probabilities PA→B from the values Pclim
A→B

calculated using the 23-extended-winter ERA40 climatology.
The thick solid line showing $PA→B = 0 is analogous to
the thick solid line in Figure 3. Consistent with Figure 3,
the grey shading shows a relative frequency histogram
of transition probability deviations calculated from three-
year subsamples of the ERA40 data, and the thick dashed
line shows the transition probability deviations calculated
from the TIGGE ECMWF operational analysis data. The
crossed, circled and asterisked lines show the mean (over the
TIGGE dataset) predicted transition probability deviations
for the ECMWF, CMC and Met Office ensemble forecasts
respectively. Two general points stand out in Figure 4. Firstly,
at no point do the mean predicted transition probabilities
deviate further from the ERA40 climatological transition
probabilities than would be expected given variability
associated with three-extended-winter subsamples, i.e. the
mean deviation of the predicted transition probabilities
remains on the grey shaded area. Secondly, large deviations
($PA→B ! 0.1) of mean predicted transition probabilities
from PA→B are closely associated with large deviations of
the TIGGE analysis transition probabilities; see for example
$PS→S and $PS→M. Considering both these points, Figure 4
provides no evidence of the forecast transition probabilities
drifting towards unphysical climatological values over a
15 day lead time.

At short lead times the mean predicted transition
probabilities tend to follow the TIGGE analysis transition
probabilities, whereas at long lead times the mean ensemble
predicted transition probabilities tend to be close to
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Figure 3. Estimated probabilities of transition between the clusters N, M and S versus lag. Thick solid line: 23-extended-winter (ONDJF, October
1978–February 2002) ERA40 climatological transition probabilities. Thin horizontal line: ERA40 23-extended-winter climatological cluster occupancy.
Dashed line: operational analysis from TIGGE data (ONDJF, October 2007–February 2010). Grey shading: relative frequency histogram of transition
probabilities obtained from three-extended-winter subsamples of the ERA40 data (zero values are shown in white).

or somewhere between the ERA40 climatological mean
and the TIGGE analysis transition probabilities; see for
example $PN→N. This is consistent with a gradual loss
of skill/predictability over the course of the forecast
lead time. $PN→S is a particularly striking example in
that the mean predicted transition probabilities from all
three forecasting centres follow TIGGE analysis transition
probabilities up to about τ = 7 days, then drift back to the
ERA40 climatological value by day 15.

4. Skill of TIGGE forecast transition probabilities

In section 3 it is shown that there is no evidence of a
drift of the mean TIGGE forecast transition probabilities
towards climatologically inconsistent values. It is found,
rather, that the behaviour of the forecast transition
probabilities with increasing lead time is consistent with
a drift toward climatological values consistent with loss of
predictability/forecast skill. To assess the skill of the TIGGE
forecast transition probabilities, we will utilize the Brier
Skill Score (Brier, 1950). The Brier Skill Score provides a
means of assessing the quality of probabilistic forecasts of
categorical (‘yes/no’) events relative to some baseline method
of forecasting. This baseline forecasting method is usually
taken to be repeatedly issuing the climatological probability
of the event. The Brier Skill Score (BSS) is defined in terms
of the ratio of the Brier Score (BS) for the two forecasting

methods:

BSS = 1 − BS

BSclim
, (1)

such that a score of 1 implies perfect skill and scores less than
or equal to zero imply that one would be better or no worse
off simply by issuing the climatological probability of the
event instead of attempting to produce a more informative
forecast. The Brier Score is defined as

BS = 1

Nf

Nf∑

i=1

(fi − oi)
2,

where Nf is the number of forecasts, fi is the ith forecast
probability of the event and the outcome is

oi =
{

1, event occurs,
0, event does not occur.

Forecasting high probabilities for events that occur and low
probabilities for events that do not occur reduces the Brier
Score. Note that BS is defined such that it is decreased
by making better forecasts, whereas for BSS (Eq. (1)) the
converse is true.

The Brier Skill Score for each of the possible forecast
transition probabilities is calculated using the ERA40
climatological transition probabilities as the baseline method
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Figure 4. Deviation of transition probabilities from ERA40 climatological values. Dashed line: TIGGE operational analysis transition probabilities
(ONDJF, October 2007–February 2010). Asterisked, crossed and circled lines: mean forecast transition probabilities from the three forecasting centres
(ONDJF, October 2007–February 2010). Grey shading: relative frequency histogram of transition probabilities obtained from three-extended-winter
subsamples of ERA40 data (zero values are shown in white).

of forecasting. The TIGGE forecast transition probabilities,
PA→B(τ ), are defined as described in section 2, but for
clarity the method is briefly summarized here. The forecast
probability of being in cluster B at lead time τ is calculated
as the fraction of the ensemble in cluster B at lead time τ .
The initial cluster (A) and the verifying outcome are defined
from the ECMWF operational analyses. To avoid bias in
favour of any one centre, only forecasts for which the initial
and outcome cluster were the same for the analyses from all
forecasting centres were used to assess the skill, although this
decision was found to have negligible impact on the results.
The Brier Skill Score versus lead time is shown in Figure 5.

A noticeable feature of Figure 5 is the high degree of
similarity in the manner in which the skill of the three
different forecasting centres changes with lead time. The
similarity of the skill scores provides evidence for the
general applicability of the results to recently/currently
operational forecasting systems. The fact that they are so
similar, even containing similar ‘bumps’ and ‘wiggles’ (e.g.
at nine days for PM→S), is an indication that the scores
may be strongly influenced by individual synoptic events
that occurred during the TIGGE period. A clear example
of this (not shown) is that removal of a large section
of data from the winter of 2009–2010, during which the
flow was characterized by a persistent southward shift of
the jet or negative NAO (Cattiaux et al., 2010), removes
much of the skill of forecasts initialized in the south jet
cluster (PS→S, PS→M, PS→N) beyond about seven days.

The sensitivity to the removal of long persistent sections
of the data serves to highlight the fact that the statistical
degrees of freedom of the Brier Skill Score for the forecast
transition probabilities is likely to be smaller than the
number of forecasts in the TIGGE dataset. This means that
we should not assume that the performance of the TIGGE
forecasts is representative of a larger population of forecasts.
However, using the Brier Skill Score to verify the TIGGE data
allows us to distinguish between skilful forecast probabilities
and ensembles constructed by drawing randomly from
climatological statistics, as long as we remember that BS and
hence BSS are conditionally distributed on the outcomes oi
(see e.g. Ferro, 2007).

The broad features of Figure 5 are that all different
transitions are skilfully predicted in the first few days, with
skill dropping off quite sharply after about 3–5 days. Several
of the transitions show a distinct reduction in the rate
at which skill falls off with lead time after about 7–10
days. This feature is most apparent in transitions involving
the south and mid clusters, and least apparent in those
involving the north cluster (particularly transitions between
north and south). At long lead times (days 13–15), the
forecasts initialized in the north jet cluster are less skilful
than those initialized in the south and mid jet clusters. The
skill of predictions of transition between the south and north
clusters (PS→N) is also low relative to the other transitions.

To examine further the possible reasons for the differences
between the skill of predictions of the different transitions,
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Figure 5. Brier Skill Score as a function of lead time computed for predicted transition probabilities derived from TIGGE ensemble forecasts (ONDJF,
October 2007–February 2010). The asterisked, crossed and circled lines show the different forecasting centres.

Figure 6 shows a reliability (or attributes) diagram computed
for day 10 (dashed line) and day 15 (solid line) of
the ECMWF forecasts (similar diagrams for the other
centres produce qualitatively similar results). The reliability
diagram provides a graphical means of assessing whether
the predicted probabilities of an event correspond to
the observed frequency. To construct the diagram, each
forecast is allocated into one of a set of discrete bins
depending on the forecast probability. For each forecast
probability bin, the observed relative frequency (the average
of the outcome variable oi for all the forecasts in the
bin) is calculated. The observed relative frequencies are
then plotted against the forecast probability so that (for
a large enough sample) if the forecast probabilities are
quantitatively accurate (calibrated) then the plotted points
will lie exactly on the diagonal. Vertical and horizontal lines
mark the climatological probability of each transition, and
the grey shaded area marks regions associated with positive
contribution to the Brier Skill Score. It should be noted that
in Figure 6 the horizontal/vertical lines and grey shading
are plotted for day 15 values, although from Figure 3 it can
be seen that day 10 values would not be markedly different
in most cases. The bar chart beneath each diagram shows
the number of forecasts in each probability bin at day 10
(open bars) and day 15 (shaded bars). For a full discussion
of reliability diagrams, the reader is referred to Murphy and
Winkler (1977) and Hsu and Murphy (1986).

Looking first at the reliability diagrams for transitions
from the north jet cluster, the forecast transition proba-
bilities are more densely concentrated near the climatolog-
ical values at day 15 (filled bars) than for other transitions.

This greater contraction of the forecast transition probabil-
ities to climatological values is consistent with the shorter
time-scale over which the ERA40 climatological transition
probabilities involving the north jet cluster become equal
to the climatological occupancy (Figure 3). For transitions
from the north to south jet clusters, the flatness of the
day 15 reliability curve (solid line) between PN→S = 0 and
PN→S = 0.5 relative to the day 10 curve (dashed) is con-
sistent with overestimation of the transition probability
in the forecasts compared with the analyses, and with
the drift of mean TIGGE forecast transition probabilities
to ERA40 climatological transition probabilities seen in
Figure 4. For PS→S, the skill of the TIGGE forecasts is asso-
ciated largely with accurately predicting very high transition
probabilities for transitions that do occur or conversely
very low probabilities for transitions that do not occur.
The day 15 reliability curve (solid line) is, however, fairly
flat between PS→S = 0.1 and PS→S = 0.7. This is consistent
with skill in TIGGE forecasts of PS→S being associated with
a long-lived predictable southward shift of the jet in winter
2009/2010. A noticeable feature of Figure 6 is that (consist-
ent with them being more skilful) the TIGGE day 15 fore-
casts of the probability of transition from the mid jet cluster
(PM→S, PM→M, PM→N) more closely follow the diagonal
than forecasts initialized in other clusters.

Another means of assessing the quality of probabilistic
forecasts of categorical events is the Receiver Operating
Characteristic (ROC) curve (Mason, 1982; Buizza and
Palmer, 1998). The ROC curve provides a means of assessing
the ability of a forecast system to discriminate between the
occurrence and non-occurrence of an event that is largely
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Figure 6. Reliability diagrams (see text) computed for 10 day (dashed line) and 15 day (solid line) lead ECMWF forecasts (ONDJF, October 2007–February
2010). The number of data points in each probability bin is shown in the bar charts beneath each diagram: unshaded bars show 10 day lead-time results,
while shaded bars show 15 day results. BSS values shown are ordered as 10 day, 15 day. Grey shading indicates regions that contribute positively to the
Brier Skill Score at 15 day lead times.

independent of forecast calibration (Viatcheslav and Zwiers,
2003), i.e. whether the forecast probability matches the
observed relative frequency. To calculate a single point of
the ROC curve, one selects a probability threshold that the
forecast probability of the event must exceed before the
event is predicted to occur. The hit rate (HR) and false
alarm rate (FAR) for this threshold are then respectively
defined as the frequency of occurrence and the frequency of
non-occurrence of the event when it is predicted to occur.
The ROC curve consists of HR plotted against FAR for all
such probability thresholds in a discretization of the range
[0, 1]. The area under the ROC curve (AUR) is an associated
measure of forecast skill, with AUR = 1 corresponding to
perfect skill and AUR = 0.5 corresponding to no skill.

Figure 7 shows the ROC curves calculated for the ECMWF
ensemble 10 day (dashed) and 15 day (solid) predicted
transition probabilities. The area under the ROC (AUR)
is also shown on each panel. Looking first at transitions
between the south and north jet clusters (S → N, N → S),
it is noticeable that there is a much larger contraction of the
area under the ROC from between τ = 10 and τ = 15 than
for the other transitions. Consistent with Figures 5 and 6,
the ROC curves and AUR values for forecasts initialized in
the mid jet cluster and for S → M demonstrate a markedly
smaller reduction in skill between the between days 10 and
15. As with the Brier Skill Score, the area under the ROC is
smaller at day 15 for transitions originating in the north jet
cluster (N → S, N → M, N → N) and S → N than other
transitions.

5. Summary and conclusions

This article addresses the question of whether medium-range
ensemble forecasts are consistent with and able to predict the
transition probabilities associated with a low-dimensional
cluster model of the North Atlantic eddy-driven jet. The jet
is partitioned into three clusters: a mid jet cluster, which has
been interpreted by Woollings et al. (2010a) as an undis-
turbed jet, and two clusters representing southward and
northward shifts of the jet. The ability of ensemble forecasts
from the TIGGE archive created in three forecasting centres
(ECMWF, Met Office, CMC) during the period October
2007–February 2010 to recreate the observed transition
probabilities of the three clusters is assessed. No evidence is
found that the TIGGE ensemble forecast transition probabil-
ities drift towards values inconsistent with climatological val-
ues calculated from ERA40 data. Furthermore it is found that
the TIGGE forecast transition probabilities from all forecast-
ing centres possessed significant skill out to 15 day lead times.

For the forecasts in the TIGGE dataset, probabilistic
forecasts initialized in the north jet cluster are found
generally to have lower day 15 Brier Skill than those
initialized in the south and mid clusters. One exception
is the prediction of transition from south to north clusters,
which is also found to have lower day 15 Brier Skill. Forecasts
initialized from the mid jet cluster are found to have the
highest day 15 Brier Skill. Similar results are found for the
area under the ROC. These results may point to generally
lower predictability of the north jet cluster; however, due
to the long time-scales associated with the clusters and
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Figure 7. ROC curves computed for 10 (dashed line) and 15 (solid line) day lead ECMWF forecasts (ONDJF, October 2007–February 2010). AUR values
shown are ordered as 10 day, 15 day.

the relatively short duration of the three-extended-winter
forecast sample provided by the TIGGE dataset, one must
be cautious when generalizing the results. Future studies
into the predictability of atmospheric regime-like behaviour
will certainly benefit from having longer forecast datasets
available.
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