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SUMMARY

Simulations of the global atmosphere for weather and chrfaecasting require fast and accurate solutions and
so operational models use high-order finite differencesegnlar structured grids. This precludes the use of local
refinement; techniques allowing local refinement are etkpensive (eg. high-order finite element techniques) or
have reduced accuracy at changes in resolution (eg. uhgeeddinite-volume with linear differencing).

We present solutions of the shallow-water equations fortevigsflow over a mid-latitude mountain from a
finite-volume model written using OpenFOAM. A second/thindler accurate differencing scheme is applied on
arbitrarily unstructured meshes made up of various shapésedinement patterns. The results are as accurate as
equivalent resolution spectral methods. Using lower odiéerencing reduces accuracy at a refinement pattern
which allows errors from refinement of the mountain to acclateuand reduces the global accuracy over a 15 day
simulation. We have therefore introduced a scheme whicla f2® cubic polynomial approximately on a stencil
around each cell. Using this scheme means that refinemehné afiduntain improves the accuracy after a 15 day
simulation.

This is a more severe test of local mesh refinement for glotrallations than has been presented but a realistic
test if these techniques are to be used operationally. Téfésient, high-order schemes may make it possible for
local mesh refinement to be used by weather and climate ftrawadels.
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1. Introduction

Adaptive and variable resolution modelling of the atmospli® an expanding area of research due to
the potential benefits to, for example, regional climatewwadther forecasting and cyclone tracking eg.
[3,11, 4, 2, 7, 10]. There are however still challenges keefbese techniques can compete in accuracy
and efficiency with techniques used for fully structuredfarm grids.

There are a number of ways of achieving variable resolu8arger and Oliger [3] used nesting
of finer structured grids within coarser grids, Bacon et[3l.use a Delaunay triangulation of two-
dimensional space and Iske and Kaser [6] use a Voronoi degsitign of space. Alternatively, one
can deform a structured mesh [12] or refinement patterns parstst all around the globe [13]. We
have implemented the shallow-water equations in OpenFOMMv( opencf d. co. uk) which can
handle any mesh structure. This allows us to test the acgofatifferent mesh structures.
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2 H. WELLER

Finite-volume models are appropriate for atmospheric rtingedue to their inherent conservation,
availability of bounded differencing schemes [15], apglidity to any mesh structure [6] and
availability of efficient, segregated implicit solutiorgakithms [5]. Cell-centre/face-centre staggered
finite-volume algorithms usually use linear differencingaever, which is only first-order accurate
where the mesh is non-uniform [1] and which we will show is sofficient for global atmospheric
models. We will present results using a second/third-odiféerencing scheme that maintains this
accuracy regardless of mesh uniformity or regularity.

The shallow-water equations describe much of the atmosjshéehaviour in the horizontal,
allowing tests of discretisation. Results are presenteti@fVilliamson [17] test case with westerly
flow over a mid-latitude mountain. This test case enablesnemation of the effect of local mesh
refinement on global errors. Low resolution can result inrgepresentation of orography and, in the
real atmosphere, orographic impacts on the flow can be dumad-scale diabatic processes such as
orographic rainfall. There are numerical difficulties doethe changes in accuracy where the mesh
becomes finer however; grid-scale waves travelling fromfithe mesh to the coarse mesh could be
refracted or reflected. The change in accuracy could aleeigdostrophic balance which will be a
source of unbalanced waves. These problems will be sevetasimdiabatic, frictionless test case.
A more complete model of the atmosphere will suffer from thme errors where the mesh changes
resolution but should also benefit from more accurate reptason of diabatic terms.

The model, including the new differencing scheme and thehe®ssed, is described in section 2,
results are presented in section 3 and final conclusionsrdiragection 4.

2. Model Description

2.1. Williamson et. al. Test Case [17]

The test case has an isolated, mid-latitude mountain artlimionditions consisting of shear
free westerly flow in geostrophic balance with the geopddbrtieight. As the flow hits the
mountain, the balance between the Coriolis force and presgtadient is reduced, generating
gravity and Rossby waves. After 15 days these Rossby wawesdpaead around both hemispheres.
A reference solution calculated from a very high resolutgpectral model is available from
ftp.ucar. edu/ chanmp/ shal | ow.

2.2. OpenFOAM

OpenFOAM is a public domain, open source computational fldyjthamics toolkit developed
and released by OpenCFbwmw. opencf d. co. uk) using the finite-volume technique on three-
dimensional arbitrarily unstructured meshes. (This mélaaisthe cells can be any 3D shape.) Some of
the coding practices are described by [16] and the unstreatfinite-volume method by [5].

2.3. A Shallow-water Equation Solver written using Open®DA

The two-dimensional shallow-water equations in a thremedisional geometry consist of the
momentum and continuity equations:

hu h
%+V-hUU=—Qth—ghV(h+ho), ‘;—t+v.huzo 1)

whereU is the horizontal velocityy is in the horizontal directior is the height of the fluid surface
above the solid surfachyg is the height of the solid surface above a reference heigjig the rotation
rate of the globe, ang is the scalar acceleration due to gravity.

These equations have been implemented in OpenFOAM on aitwerdional spherical mesh in
Cartesian co-ordinates. The cell-volumes, cell-cenfeeg-centres and face-areas have been modified
for the curved, spherical domain. The prognostic variablesthe cell-average momentuhi), and
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UNSTRUCTURED MODELLING OF THE ATMOSPHERE 3

height,h, and, to avoid a computational mode, the mass flux betweds (celrmal to the faces)).
The momentum equation is integrated over each cell andafised using Gauss’ divergence theorem:

n+3

%((hU)“+1 — (hU)") + 3 (@U)72 = =6V (@ x hU + ghV(h + ho))"*? @

wheredV is the cell-volumegt is the time step, the superscript represents the time Stemeans
summation over all the faces of a cell, subsgripteans interpolation from cell-averages to face
averages an; is the discretised cell-average gradient. This equatidnté&rpolated onto the cell
faces and the dot product is taken with the face-area vei@gnormal to the face with the magnitude
of the face-area), to give an equation for the flux= (hU) ¢ - §S):

n+3

1 1
Pt — Aif@s" +(H—=otQxhU){"2.65— st ght 2V{ 2(h + ho)) (3

whereH = =% > ¢inUn , A= 1+ 85> %/1, Vs is the discretised gradient at the face dot
producted withS and A and Ay are interpolation factors from cell-average values to facerage
values. Equation 3 is substituted into the continuity eigmab obtain an equation for the height:

55—\:(hn+l _ hn) + Z¢n+% =0 (4)

The second-order, two time-level Crank-Nicholson schesnesed to solve the discretised momentum
and height equations implicitly (separately and with nmedr terms lagged) and the flux equation
explicitly. The lagged new time level values are updated @hequations are solved once again at
each time step. This solution procedure is described in rdetail by [5]. The old time-level flux

is interpolated from the old time-level momentum so thatythemain consistent. This separation
by one time step between the momentum and the flux is enougtasmé computational mode is
excited in this slowly evolving case where all features amdl wesolved. For cases in which grid
scale gravity waves are excited, the old time-level flux enbled with the old momentum so that they
remain consistent while removing the computational motte.details of this blending is the subject of
current research. It remains to define how the interpolatioom cell-averages to faces and gradients
are estimated.

2.4. Interpolations and Gradients

To make discretisation on arbitrarily unstructured medsiesple, cell-volume average quantities are
approximated by the cell-centre value and face-area agsrag approximated by face-centre values.
These approximations are second-order accurate but westithfeund advantage from using higher-
order schemes to interpolate from cell-centre values te-tantres and for estimating gradients.

2.4.1. The quasi-cubic differencing schemg simple way to interpolate onto a face is to use the
values and gradients in the two adjacent cells, where tHeceetre gradients are calculated using
Gauss’ theorem and the face values. This is theoretically finst-order accurate but if the mesh is

uniform, polynomials of up to fourth-order can be discredigxactly.

2.4.2. The multidimensional polynomial fit differencindpesme We have implemented a scheme
based on [9] that fits a polynomial around each cell for intéates and gradients. A two-dimensional
cubic polynomial is fit for the neighbourhood of each celingsa local co-ordinate system. The two-
dimensional cubic has 10 unknowns so a stencil of at leasell® surrounding each cell is found.
As there can be more cells in each stencil than unknowns,st-$g@ares fit using singular value
decomposition is found with the central cells in the stema@ighted so that the fit is most accurate
near the centre. The singular value decomposition needsdoie only once per cell at the beginning
of the simulation, leaving just multiplies to calculate an interpolation or a gradient comgnt per
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Figure 1. Errors after 15 days for the flow over a mid-latitnsiguntain. Contour interval is 5m.

time step, whera is the size of the stencil. As this scheme creates a large etatignal molecule, it

is not used to solve equations implicitly as it would createmany inter-cell dependencies and make
the linearised equation set expensive to solve. It is tbheeefised as a deferred correction on linear
differencing, as described by [5].

2.5. Model Setup: Meshes and Time Step

Results are presented for three different meshes of theptelo reduced latitude-longitude meshes,
one of which has 2:1 refinement of the mountain and the othexadonal-icosohedral mesh as used
by Thuburn [14]. A time step of 20 minutes is used for consisyewith Jacob [8].

3. Results

The method is well-balanced in the presence of orograpkyrtbuntain test case was run for 15 days
starting from a geostrophically balanced resting statetb@#naximum speed generated was 0.6cm/s.
This was due to inaccuracies in the initial fluid height fietit giving an exactly constant total height
when added to the mountain height. This initial error péssce total energy is conserved to within
0.05%, vorticity to within 107% and enstrophy to within 0.1% over the 15 days.

3.1. Comparisons with previously published results

After 15 days errors in comparison to the reference solui@ncompared with published errors on
grids with similar resolution. Figure 1 shows errors of tipectral model of [8] using 12864 grid
points, the model on a hexagonal-icosohedral mesh of [1d]@penFOAM results on the reduced
latitude-longitude mesh without refinement of the moungaid on the same hexagonal mesh as [14].
All error fields have oscillations around the mountain, esgly the spectral model. For the other
models, these are due to the oscillations in the spectetaefe solution, since discontinuities are not
well represented in spectral space.

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;0:1-0
Prepared usindldauth.cls
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Without refinement of mountain (6514 cells) With refinemeinountain (7252 cells)

>
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Figure 2. Errors after 15 days for the flow over a mid-latitueuntain on reduced latitude-longitude meshes.
Contour interval is 5m.

The OpenFOAM errors on the reduced latitude-longitude nagestslightly lower than the spectral
model in the tropics but larger towards the north pole. Thiglie to the coarser mesh towards the
poles and to errors introduced by the un-refinement patteemmselves. The order of the scheme for
estimating values at points has been tested by comparirgjsbeetised gradients of third and fourth-
order polynomials with the exact gradients. The cubic fitesob gives fourth-order accuracy where
the mesh is uniform and third-order accuracy at the refinép&tterns which could contribute to the
larger errors towards the poles.

The OpenFOAM errors on the hexagonal icosohedral meshraikasbut slightly lower than those
of [14] on the same mesh. [14] uses quadratic differencitigerahan cubic. This test case was also
run by [9] and the results improved with higher-order difiecing.

3.2. Comparisons between OpenFOAM results

The uniformity of the hexagonal icosohedral mesh reducehith latitude errors seen for the reduced
latitude-longitude mesh (figure 1).

Figure 2 shows results from the latitude-longitude meshits and without refinement of the
mountain and using the quasi-cubic scheme and the new ctibahBme. These runs were initialised
with the cell value set to the area-average rather than theemre value. The differences are taken
against an OpenFOAM reference solution with a resolutic®b@ix 512, coarser than the resolution of
the spectral model (320640) and so less accurate (in the tropics).

The errors are lower using the new cubic fit scheme. Impdwtatite errors reduce when the
mountain is refined whereas the errors actually increasawreemountain is refined using the quasi-
cubic scheme. Also, oscillations occur at the mesh refinéfm@mndary around the mountain when
using the quasi-cubic scheme. For adiabatic, balanced sasé as this which are run for a long time,
mesh refinement can actually degrade the errors globalifférdncing schemes are used which give
only first-order accuracy where the mesh is non-uniform. elev, using the cubic fit scheme of [9]
which gives higher-order accuracy where the mesh is nofoiumj mesh refinement on this case can
lead to lower errors globally. This is crucially importahtiesh refinement is to be used for weather
or climate forecasting.
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4. Conclusions

We have demonstrated that arbitrarily unstructured finilesme modelling using OpenFOAM can
compete with the accuracy of high-order structured tea@sgA cubic differencing scheme has been
implemented that maintains accuracy where the mesh is ndarm. Hence 2:1 refinement of the
mountain increases the accuracy globally. Using the pusveuasi-cubic scheme, the order reduces
to first where the mesh is not uniform and so 2:1 refinemenepatcan actually make the global
solution less accurate. This case is particularly semsttiverrors at refinement patterns because it is
finely balanced, adiabatic and frictionless so any errdrsdluced in the long simulation persist and
grow. A more complete model of the atmosphere will be searesiti the same way but local refinement
will offer more advantages where there are diabatic presess

We have also demonstrated that a hexagonal-icosohedralohttee sphere gives accurate solutions
since the mesh is nearly uniform globally. Unstructuredmeesf polygonal shapes such as hexagons
and pentagons could produce gradual local refinement ajth211 refinement is more straightforward
and efficient for high-order schemes.
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